Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



An Enhanced VLC Channel Model for Underground Mining Environments Considering a 3D Dust Particle Distribution Model
Indexado
WoS WOS:000781611700001
Scopus SCOPUS_ID:85126906937
DOI 10.3390/S22072483
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Underground Mining (UM) is a hostile industry that generally requires a wireless communication system as a cross-cutting axis for its optimal operation. Therefore, in the last five years, it has been shown that, in addition to radio-frequency-based communication links, wireless optical communications, such as Visible Light Communication (VLC), can be applied to UM environments. The application of VLC systems in underground mines, known as UM-VLC, must take into account the unique physical features of underground mines. Among the physical phenomena found in underground mines, the most important ones are the positioning of optical transmitters and receivers, irregular walls, shadowing, and a typical phenomenon found in tunnels known as scattering, which is caused by the atmosphere and dust particles. Consequently, it is necessary to use proper dust particle distribution models consistent with these scenarios to describe the scattering phenomenon in a coherent way in order to design realistic UM-VLC systems with better performance. Therefore, in this article, we present an in-depth study of the interaction of optical links with dust particles suspended in the UM environment and the atmosphere. In addition, we analytically derived a hemispherical 3D dust particle distribution model, along with its main statistical parameters. This analysis allows to develop a more realistic scattering channel component and presents an enhanced UM-VLC channel model. The performance of the proposed UM-VLC system is evaluated using computational numerical simulations following the IEEE 802.1.5.7 standard in terms of Channel Impulse Response (CIR), received power, Signal-to-Noise-Ratio (SNR), Root Mean Square (RMS) delay spread, and Bit Error Rate (BER). The results demonstrate that the hemispherical dust particle distribution model is more accurate and realistic in terms of the metrics evaluated compared to other models found in the literature. Furthermore, the performance of the UM-VLC system is negatively affected when the number of dust particles suspended in the environment increases.

Revista



Revista ISSN
Sensors 1424-8220

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Analytical
Instruments & Instrumentation
Engineering, Electrical & Electronic
Electrochemistry
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Palacios Jativa, Pablo Hombre Universidad de Chile - Chile
Universidad Diego Portales - Chile
2 AZURDIA-MEZA, CESAR AUGUSTO Hombre Universidad de Chile - Chile
3 Sanchez, Ivan Hombre Univ Amer - Ecuador
Universidad de Las Américas, Ecuador - Ecuador
4 Zabala-Blanco, David Hombre Universidad Católica del Maule - Chile
5 Dehghan Firoozabadi, Ali Hombre Universidad Tecnológica Metropolitana - Chile
6 Soto, Ismael Hombre Universidad de Santiago de Chile - Chile
7 SEGUEL-GONZALEZ, FABIAN ESTEBAN Hombre Universidad de Santiago de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
ANID Fondecyt
UDLA
FICA
ANID PFCHA/Beca de Doctorado Nacional/2019
UDLA Telecommunications Engineering Degree, FICA, UDLA

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded by ANID FONDECYT Regular No. 1211132, ANID PFCHA/Beca de Doctorado Nacional/2019 21190489, and UDLA Telecommunications Engineering Degree, FICA, UDLA. This work was partially funded by UCM-IN-21200 internal grant.
This research was funded by ANID FONDECYT Regular No. 1211132, ANID PFCHA/Beca de Doctorado Nacional/2019 21190489, and UDLA Telecommunications Engineering Degree, FICA, UDLA. This work was partially funded by UCM-IN-21200 internal grant.

Muestra la fuente de financiamiento declarada en la publicación.