Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Statistics-Based Dynamic Sequential Model Predictive Control for Induction Motor Drives
Indexado
WoS WOS:000782444300091
Scopus SCOPUS_ID:85125807123
DOI 10.1109/PRECEDE51386.2021.9681001
Año 2021
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Determining appropriate weighting factors is a key issue in finite control set model predictive control (FCS-MPC). The sequential model predictive control (SMPC) transforms the continuous weighting factors into fixed discrete optimization sequence and number of voltage vectors. In order to make these two parameters dynamic, this paper proposes a statistics-based dynamic sequential model predictive control scheme (Statistics-Based SMPC) for induction motor (IM) drives. This scheme focuses on the statistical characteristics of the cost function values, and uses the entropy weight method to dynamically determine the weight of the control targets, so that the optimization sequence can be dynamically changed with different working conditions. Another advantage of this scheme is that it is not limited by the number of control targets. Therefore, it has the potential to extend the cascade structure MPC without weighting factors to multiple control targets. Matlab/Simulink simulation verifies the effectiveness of the proposed method.

Revista



Revista ISSN
978-1-6654-2557-5

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Wang, Tianyi - Shandong Univ - China
Shandong University - China
2 Wang, Yongdu - Shandong Univ - China
Shandong University - China
3 Wang, Xingtao - Shandong Lab Technician Coll - China
Shandong Labor Vocational and Technical College - China
4 Han, Minghao - Shandong Univ - China
Shandong University - China
5 RODRIGUEZ-PEREZ, JOSE RAMON Hombre Universidad Nacional Andrés Bello - Chile
6 Zhang, Zhenbin Hombre Shandong Univ - China
Shandong University - China
7 IEEE Corporación

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Natural Science Foundation of Jiangsu Province
Shandong Natural Science Foundation
ANID
General Program of National Natural Science Foundation of China
Key Technology Research and Development Program of Shandong
Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work is financially supported by Shandong Natural Science Foundation (ZR2019QEE001), Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project NO.2019JZZY020805), General Program of National Natural Science Foundation of China (51977124) and Natural Science Foundation of Jiangsu Province (BK20190204). J. Rodr ' iguez acknowledges the support of ANID through projects FB0008, ACT192013 and 1210208.
The corresponding author of this work is Dr.-Ing. Zhenbin Zhang (e-mail: zbz@sdu.edu.cn). This work is financially supported by Shandong Natural Science Foundation (ZR2019QEE001), Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project NO.2019JZZY020805), General Program of National Natural Science Foundation of China (51977124) and Natural Science Foundation of Jiangsu Province (BK20190204). J. Rodríguez acknowledges the support of ANID through projects FB0008, ACT192013 and 1210208.

Muestra la fuente de financiamiento declarada en la publicación.