Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.ISPRSJPRS.2021.07.004 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Accurate seismic risk modeling requires knowledge of key structural characteristics of buildings. However, to date, the collection of such data is highly expensive in terms of labor, time and money and thus prohibitive for a spatially continuous large-area monitoring. This study quantitatively evaluates the potential of an automated and thus more efficient collection of vulnerability-related structural building characteristics based on Deep Convolutional Neural Networks (DCNNs) and street-level imagery such as provided by Google Street View. The proposed approach involves a tailored hierarchical categorization workflow to structure the highly heterogeneous street-level imagery in an application-oriented fashion. Thereupon, we use state-of-the-art DCNNs to explore the automated inference of Seismic Building Structural Types. These reflect the main-load bearing structure of a building, and thus its resistance to seismic forces. Additionally, we assess the independent retrieval of two key building structural parameters, i.e., the material of the lateral-load-resisting system and building height to investigate the applicability for a more generic structural characterization of buildings. Experimental results obtained for the earthquake-prone Chilean capital Santiago show accuracies beyond κ = 0.81 for all addressed classification tasks. This underlines the potential of the proposed methodology for an efficient in-situ data collection on large spatial scales with the purpose of risk assessments related to earthquakes, but also other natural hazards (e.g., tsunamis, or floods).
| WOS |
|---|
| Geosciences, Multidisciplinary |
| Geography, Physical |
| Remote Sensing |
| Imaging Science & Photographic Technology |
| Scopus |
|---|
| Computer Science Applications |
| Atomic And Molecular Physics, And Optics |
| Computers In Earth Sciences |
| Engineering (Miscellaneous) |
| SciELO |
|---|
| Sin Disciplinas |
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Aravena Pelizari, Patrick | Hombre |
Deutsches Zentrum fur Luft- Und Raumfahrt - Alemania
German Aerosp Ctr DLR - Alemania Deutsches Zentrum für Luft- und Raumfahrt (DLR) - Alemania |
| 1 | Pelizari, Patrick Aravena | Hombre |
German Aerosp Ctr DLR - Alemania
Deutsches Zentrum für Luft- und Raumfahrt (DLR) - Alemania |
| 2 | Geiss, Christian | Hombre |
Deutsches Zentrum fur Luft- Und Raumfahrt - Alemania
German Aerosp Ctr DLR - Alemania Deutsches Zentrum für Luft- und Raumfahrt (DLR) - Alemania |
| 3 | AGUIRRE-APARICIO, PAULA | Mujer |
National Research Center for Integrated Natural Disaster Management - Chile
Pontificia Universidad Católica de Chile - Chile Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile |
| 4 | SANTA MARIA-OYANEDEL, RAUL HERNAN | Hombre |
National Research Center for Integrated Natural Disaster Management - Chile
Pontificia Universidad Católica de Chile - Chile Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile |
| 5 | Merino Peña, Yvonne | Mujer |
National Research Center for Integrated Natural Disaster Management - Chile
Pontificia Universidad Católica de Chile - Chile Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile |
| 6 | Taubenbock, Hannes | Hombre |
Deutsches Zentrum fur Luft- Und Raumfahrt - Alemania
Julius-Maximilians-Universität Würzburg - Alemania German Aerosp Ctr DLR - Alemania UNIV WURZBURG - Alemania Deutsches Zentrum für Luft- und Raumfahrt (DLR) - Alemania |
| Fuente |
|---|
| CIGIDEN |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| National Research Center for Integrated Natural Disaster Management |
| German Federal Ministry of Education and Research (BMBF) |
| National Research Center for Integrated Natural Disaster Management (CIGIDEN) |
| Bundesministerium für Bildung und Forschung |
| Regular Fondecyt Project |
| Agradecimiento |
|---|
| The authors would like to thank Google for the access to the imagery and meta-data through their Street View Static API. This research received funding by the German Federal Ministry of Education and Research (BMBF) under grant no. 03G0876 (project RIESGOS). P. Aguirre and H. Santa María acknowledge funding from the National Research Center for Integrated Natural Disaster Management (CIGIDEN) CONICYT/FONDAP/15110017 , and by the Regular Fondecyt Project CONICYT/FONDECYT/1191543 . |
| The authors would like to thank Google for the access to the imagery and meta-data through their Street View Static API. This research received funding by the German Federal Ministry of Education and Research (BMBF) under grant no. 03G0876 (project RIESGOS). P. Aguirre and H. Santa Mar?a acknowledge funding from the National Research Center for Integrated Natural Disaster Management (CIGIDEN) CONICYT/FONDAP/15110017, and by the Regular Fondecyt Project CONICYT/FONDECYT/1191543. |
| The authors would like to thank Google for the access to the imagery and meta-data through their Street View Static API. This research received funding by the German Federal Ministry of Education and Research (BMBF) under grant no. 03G0876 (project RIESGOS). P. Aguirre and H. Santa Maria acknowledge funding from the National Research Center for Integrated Natural Disaster Management (CIGIDEN) CONICYT/FONDAP/15110017, and by the Regular Fondecyt Project CONICYT/FONDECYT/1191543. |