Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Automated building characterization for seismic risk assessment using street-level imagery and deep learning
Indexado
WoS WOS:000697167200025
Scopus SCOPUS_ID:85114838552
DOI 10.1016/J.ISPRSJPRS.2021.07.004
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Accurate seismic risk modeling requires knowledge of key structural characteristics of buildings. However, to date, the collection of such data is highly expensive in terms of labor, time and money and thus prohibitive for a spatially continuous large-area monitoring. This study quantitatively evaluates the potential of an automated and thus more efficient collection of vulnerability-related structural building characteristics based on Deep Convolutional Neural Networks (DCNNs) and street-level imagery such as provided by Google Street View. The proposed approach involves a tailored hierarchical categorization workflow to structure the highly heterogeneous street-level imagery in an application-oriented fashion. Thereupon, we use state-of-the-art DCNNs to explore the automated inference of Seismic Building Structural Types. These reflect the main-load bearing structure of a building, and thus its resistance to seismic forces. Additionally, we assess the independent retrieval of two key building structural parameters, i.e., the material of the lateral-load-resisting system and building height to investigate the applicability for a more generic structural characterization of buildings. Experimental results obtained for the earthquake-prone Chilean capital Santiago show accuracies beyond κ = 0.81 for all addressed classification tasks. This underlines the potential of the proposed methodology for an efficient in-situ data collection on large spatial scales with the purpose of risk assessments related to earthquakes, but also other natural hazards (e.g., tsunamis, or floods).

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Geosciences, Multidisciplinary
Geography, Physical
Remote Sensing
Imaging Science & Photographic Technology
Scopus
Computer Science Applications
Atomic And Molecular Physics, And Optics
Computers In Earth Sciences
Engineering (Miscellaneous)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Aravena Pelizari, Patrick Hombre Deutsches Zentrum fur Luft- Und Raumfahrt - Alemania
German Aerosp Ctr DLR - Alemania
Deutsches Zentrum für Luft- und Raumfahrt (DLR) - Alemania
1 Pelizari, Patrick Aravena Hombre German Aerosp Ctr DLR - Alemania
Deutsches Zentrum für Luft- und Raumfahrt (DLR) - Alemania
2 Geiss, Christian Hombre Deutsches Zentrum fur Luft- Und Raumfahrt - Alemania
German Aerosp Ctr DLR - Alemania
Deutsches Zentrum für Luft- und Raumfahrt (DLR) - Alemania
3 AGUIRRE-APARICIO, PAULA Mujer National Research Center for Integrated Natural Disaster Management - Chile
Pontificia Universidad Católica de Chile - Chile
Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile
4 SANTA MARIA-OYANEDEL, RAUL HERNAN Hombre National Research Center for Integrated Natural Disaster Management - Chile
Pontificia Universidad Católica de Chile - Chile
Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile
5 Merino Peña, Yvonne Mujer National Research Center for Integrated Natural Disaster Management - Chile
Pontificia Universidad Católica de Chile - Chile
Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile
6 Taubenbock, Hannes Hombre Deutsches Zentrum fur Luft- Und Raumfahrt - Alemania
Julius-Maximilians-Universität Würzburg - Alemania
German Aerosp Ctr DLR - Alemania
UNIV WURZBURG - Alemania
Deutsches Zentrum für Luft- und Raumfahrt (DLR) - Alemania

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CIGIDEN
Fondo Nacional de Desarrollo Científico y Tecnológico
National Research Center for Integrated Natural Disaster Management
German Federal Ministry of Education and Research (BMBF)
National Research Center for Integrated Natural Disaster Management (CIGIDEN)
Bundesministerium für Bildung und Forschung
Regular Fondecyt Project
Google

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors would like to thank Google for the access to the imagery and meta-data through their Street View Static API. This research received funding by the German Federal Ministry of Education and Research (BMBF) under grant no. 03G0876 (project RIESGOS). P. Aguirre and H. Santa María acknowledge funding from the National Research Center for Integrated Natural Disaster Management (CIGIDEN) CONICYT/FONDAP/15110017 , and by the Regular Fondecyt Project CONICYT/FONDECYT/1191543 .
The authors would like to thank Google for the access to the imagery and meta-data through their Street View Static API. This research received funding by the German Federal Ministry of Education and Research (BMBF) under grant no. 03G0876 (project RIESGOS). P. Aguirre and H. Santa Mar?a acknowledge funding from the National Research Center for Integrated Natural Disaster Management (CIGIDEN) CONICYT/FONDAP/15110017, and by the Regular Fondecyt Project CONICYT/FONDECYT/1191543.
The authors would like to thank Google for the access to the imagery and meta-data through their Street View Static API. This research received funding by the German Federal Ministry of Education and Research (BMBF) under grant no. 03G0876 (project RIESGOS). P. Aguirre and H. Santa Maria acknowledge funding from the National Research Center for Integrated Natural Disaster Management (CIGIDEN) CONICYT/FONDAP/15110017, and by the Regular Fondecyt Project CONICYT/FONDECYT/1191543.

Muestra la fuente de financiamiento declarada en la publicación.