Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JDE.2021.09.008 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this work we study an approximation of a mild solution y of a semilinear first order abstract differential problem with delay, which depends of an initial history condition and an unbounded closed linear operator A generating a C0-semigroup on a Banach space X. The approximation considers the mild solutions (zδ)δ>0 of the corresponding family of differential equations with piecewise constant argument, varying the semilinear term with a parameter δ. Our main results is about the obtaining of the solution zδ in terms of a difference equation on X and conditions to ensure uniform convergence of zδ to y as δ→0, on compact and unbounded intervals. We obtain explicit exponential decay estimates for the error function using the stability of the semigroup and the Halanay's inequality. Also with a new idea and method we prove that the approximation is stable and there exists a preservation of asymptotic stability between the solution of delayed differential equation and its corresponding difference equation, obtained by piecewise constant argument.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | PINTO-CONTRERAS, MANUEL ENRIQUE | Hombre |
Universidad de Chile - Chile
|
| 2 | POBLETE-GRANDON, FELIPE ENRIQUE | Hombre |
Universidad Austral de Chile - Chile
|
| 3 | SEPULVEDA-OEHNINGER, DANIEL | Hombre |
Universidad Tecnológica Metropolitana - Chile
|
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| CONICYT + FONDECYT/Regular + |
| CONICYT + FONDECYT/Iniciacion + |
| Agradecimiento |
|---|
| M. Pinto is partially supported by CONICYT + FONDECYT/Regular + 1170466.F. Poblete is partially supported by CONICYT + FONDECYT/Iniciación + 11181263.D. Sepúlveda is partially supported by CONICYT + FONDECYT/Iniciación + 11190457. |
| M. Pinto is partially supported by CONICYT + FONDECYT/Regular + 1170466.r F. Poblete is partially supported by CONICYT + FONDECYT/Iniciacion + 11181263.r D. Sepulveda is partially supported by CONICYT + FONDECYT/Iniciacion + 11190457. |