Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Traveling Ionospheric Disturbances Observed Over South America After Lithospheric Events: 2010-2020
Indexado
WoS WOS:000783200400001
Scopus SCOPUS_ID:85128873321
DOI 10.1029/2021JA030060
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Here, the ionospheric response to earthquakes, earthquakes inducing tsunamis, and volcanic eruptions are presented as a contribution to the so-called ionospheric seismology with the eventual development of real-time warning systems in mind. A thorough analysis of Traveling Ionospheric Disturbances (TIDs) observed after these lithospheric events in South America is presented. It is based on a decade of total electron content (TEC) anomaly maps constructed explicitly for this purpose, likely the most extensive survey ever for South America. Three disturbance types are identified: TIDs generated by shock-acoustic waves, by gravity waves, possibly induced by tsunami waves, and by Rayleigh surface waves. TIDs are observed after earthquakes with epicenters on the Pacific Ocean east coast, except one in the middle of the ocean. TIDs-generating earthquake thresholds are found to be Mw >= 7.0 and depth <= 40, and TID amplitudes and ranges are proportional to earthquake magnitude. Fault mechanism and satellite-receiver pair geometry are also considered. TIDs after volcanic eruptions confirm that atmospheric resonances are already reported. TIDs propagation direction depends strongly on the geomagnetic field direction, propagation toward the geomagnetic equator being more efficient. It was only possible to add some kind of vertical disturbance-propagation evidence to TEC TIDs identification in some cases using ionograms from nearby ionosondes. A denser ionosonde network with greater sounding frequency would be necessary for further study.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Astronomy & Astrophysics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 BRAVO-SEPULVEDA, MANUEL ALEJANDRO Hombre Universidad de Concepción - Chile
Ctr Interuniv Fis Alta Atmosfera CInFAA - Chile
Centro Interuniversitario de Física de la Alta Atmósfera - Chile
2 Benavente, R. Hombre Universidad Católica de la Santísima Concepción - Chile
Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile
National Research Center for Integrated Natural Disaster Management - Chile
3 Foppiano, A. J. Hombre Universidad de Concepción - Chile
Ctr Interuniv Fis Alta Atmosfera CInFAA - Chile
Centro Interuniversitario de Física de la Alta Atmósfera - Chile
4 Urra, B. - Universidad de Concepción - Chile
5 Ovalle, E. Hombre Universidad de Concepción - Chile
Ctr Interuniv Fis Alta Atmosfera CInFAA - Chile
Centro Interuniversitario de Física de la Alta Atmósfera - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Comisión Nacional de Investigación Científica y Tecnológica
CONICYT/FONDECYT POSTDOCTORADO
U.S. Geological Survey
National Oceanic and Atmospheric Administration
Global Volcanism Program for volcanic eruptions catalog
Word Data Center for Geomagnetism

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors acknowledge the U.S. Geological Survey (USGS) for earthquake catalog (https://earthquake.usgs.gov/), the Global Volcanism Program for volcanic eruptions catalog (https://volcano.si.edu/), the National Oceanic and Atmospheric Administration (NOAA) for the magnetic inclination estimations of the IGRF model (www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml) and for the tsunami catalog (https://www.ngdc.noaa.gov/hazard/tsu.shtml), the Word Data Center for Geomagnetism, Kyoto, for geomagnetic data (wdc.kugi.kyoto-u. ac.jp), and the DIDBase of Global Ionosphere Radio Observatory (GIRO) for ionosonde data (https://giro.uml.edu/).M.Bravo acknowledges the total support by CONICYT/FONDECYT POSTDOCTORADO 3180742 for this work. R. Benavente acknowledges support from ANID/PIA/ACT192169463 and ANID/FONDECYT/3190322.
The authors acknowledge the U.S. Geological Survey (USGS) for earthquake catalog (https://earthquake.usgs.gov/), the Global Volcanism Program for volcanic eruptions catalog (https://volcano.si.edu/), the National Oceanic and Atmospheric Administration (NOAA) for the magnetic inclination estimations of the IGRF model (www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml) and for the tsunami catalog (https://www.ngdc.noaa.gov/hazard/tsu.shtml), the Word Data Center for Geomagnetism, Kyoto, for geomagnetic data (wdc.kugi.kyoto-u.ac.jp), and the DIDBase of Global Ionosphere Radio Observatory (GIRO) for ionosonde data (https://giro.uml.edu/). M. Bravo acknowledges the total support by CONICYT/FONDECYT POSTDOCTORADO 3180742 for this work. R. Benavente acknowledges support from ANID/PIA/ACT192169463 and ANID/FONDECYT/3190322.

Muestra la fuente de financiamiento declarada en la publicación.