Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Multi-Objective-Based Tuning of Economic Model Predictive Control of Drinking Water Transport Networks
Indexado
WoS WOS:000785424000001
Scopus SCOPUS_ID:85128814502
DOI 10.3390/W14081222
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In this paper, the tuning of economic model predictive control (EMPC) applied to drinking water transport networks (DWTNs) is addressed using multi-objective optimization approaches. The tuning strategies are based on Pareto front calculations of the underlying multi-objective problem. This feature represents an improvement with respect to the standard EMPC approach for weight tuning based on trial and error. Different multi-objective optimization methods with corresponding normalization approaches of the controller objectives are first studied to explore the dynamic nature of the Pareto fronts. An automated decision-making strategy is proposed to select the preferred controller parameters as a function of different disturbance values. The tuning requires an offline training phase and an online application phase. During the offline phase, the controller parameters are selected for different disturbances using the decision-making strategy. During the online phase, two approaches are evaluated: (i) exploiting the controller parameters with the highest frequency in the resulting histogram or (ii) using a regression model between the controller parameters and the disturbances. The proposed tuning strategies are applied to a real-life simulation case study based on the Barcelona DWTN. The simulation results show that the proposed tuning strategies outperform the baseline results by exploiting the periodicity of the water demands profile.

Revista



Revista ISSN
Water 2073-4441

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Water Resources
Scopus
Aquatic Science
Geography, Planning And Development
Biochemistry
Water Science And Technology
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ocampo-Martinez, Carlos Hombre Univ Politecn Cataluna - España
Universitat Politècnica de Catalunya - España
2 Toro, Rodrigo Hombre Honeywell Chile SA - Chile
Honeywell Chile S.A. - Chile
3 Puig, Vicenc Hombre Univ Politecn Cataluna - España
Universitat Politècnica de Catalunya - España
4 Van Impe, Jan - Katholieke Univ Leuven - Bélgica
KU Leuven - Bélgica
5 Logist, Filip Hombre Katholieke Univ Leuven - Bélgica
KU Leuven - Bélgica

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Ministerio de Economía y Competitividad
European Commission
European Regional Development Fund
Generalitat de Catalunya
Agencia Estatal de Investigación
MCIN
Spanish State Research Agency (AEI)
European Regional Development Fund (ERFD)
European Regional Development Fund of the European Union
DGR of Generalitat de Catalunya (SAC group)
MCIN/ AEI

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work has been supported by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project SaCoAV (ref. MINECO PID2020-114244RB-I00), the project PID2020-115905RB-C21 (L-BEST) from MCIN/ AEI /10.13039/501100011033, the European Regional Development Fund of the European Union in the framework of the ERDF Operational Program of Catalonia 2014-2020 (ref. 001-P-001643 Looming Factory) and the DGR of Generalitat de Catalunya (SAC group ref. 2017/SGR/482).
Funding: This work has been supported by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project SaCoAV (ref. MINECO PID2020-114244RB-I00 ), the project PID2020-115905RB-C21 (L-BEST) from MCIN/ AEI /10.13039/501100011033, the European Regional Development Fund of the European Union in the framework of the ERDF Operational Program of Catalonia 2014-2020 (ref. 001-P-001643 Looming Factory) and the DGR of Generalitat de Catalunya (SAC group ref. 2017/SGR/482).

Muestra la fuente de financiamiento declarada en la publicación.