Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/SYM14040661 | ||||
| Año | 2022 | ||||
| Tipo | revisión |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The main contribution of this review is to show some relevant relationships between three geometric structures on a connected Lie group G, generated by the same dynamics. Namely, Linear Control Systems, Almost Riemannian Structures, and Degenerate Dynamical Systems. These notions are generated by two ordinary differential equations on G: linear and invariant vector fields. A linear vector field on G is determined by its flow, a 1-parameter group of Aut(G), the Lie group of G-automorphisms. An invariant vector field is just an element of the Lie algebra g of G. The Jouan Equivalence Theorem and the Pontryagin Maximum Principal are instrumental in this setup, allowing the extension of results from Lie groups to arbitrary manifolds for the same kind of structures which satisfy the Lie algebra finitude condition. For each structure, we present the first given examples; these examples generate the systems in the plane. Next, we introduce a general definition for these geometric structures on Euclidean spaces and G. We describe recent results of the theory. As an additional contribution, we conclude by formulating a list of open problems and challenges on these geometric structures. Since the involved dynamic comes from algebraic structures on Lie groups, symmetries are present throughout the paper.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Ayala, Victor | Hombre |
Universidad de Tarapacá - Chile
|
| 2 | Da Silva, Adriano | Hombre |
UNIV ESTADUAL CAMPINAS - Brasil
Universidade Estadual de Campinas - Brasil |
| 3 | Ayala, Jose | Hombre |
Universidad Arturo Prat - Chile
|
| Fuente |
|---|
| FONDECYT |
| CNPq |
| FAPESP |
| Conselho Nacional de Desenvolvimento Científico e Tecnológico |
| Fundação de Amparo à Pesquisa do Estado de São Paulo |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Proyecto FONDECYT |
| Proyecto Fondecyt n◦ |
| Agradecimiento |
|---|
| This research was funded by Proyecto Fondecyt grant number 1190142, Fapesp grant number 2020/12971-4 and CNPq grant number 309820/2019-7. |
| Funding: This research was funded by Proyecto Fondecyt grant number 1190142, Fapesp grant number 2020/12971-4 and CNPq grant number 309820/2019-7. |