Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.NONRWA.2018.07.029 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We investigate the steady-state equations of motion of the generalized Newtonian fluid in a bounded domain Omega subset of R-N, when N = 2 or N = 3. Applying the tools of nonlinear analysis (Smale's theorem, theory of Fredholm operators, etc.), we show that if the dynamic stress tensor has the 2-structure then the solution set is finite and the solutions are C-1-functions of the external volume force f for generic f. We also derive a series of properties of related operators in the case of a more general p-structure, show that the solution set is compact if p > 3N/(N + 2) and explain why the same approach as in the case p = 2 cannot be applied if p not equal 2. (C) 2018 Elsevier Ltd. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Neustupa, Jiri | - |
Czech Acad Sci - República Checa
Academy of Sciences of the Czech Republic - República Checa |
| 2 | Siginer, Dennis A. | Hombre |
Botswana Int Univ Sci & Technol - Botswana
Universidad de Santiago de Chile - Chile Botswana International University of Science and Technology - Botswana |
| Fuente |
|---|
| Universidad de Santiago de Chile |
| Grantová Agentura Ceské Republiky |
| Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile |
| DICYT of the Universidad de Santiago de Chile |
| Departamento de Investigaciones CientÃficas y Tecnológicas, Universidad de Santiago de Chile |
| Grantová Agentura České Republiky |
| Chilean Grant Agency FONDECYT |
| Grant Agency of the Czech Republic, Czechia |
| Chilean Grant Agency FONDECYT, Chile |
| Academy of Sciences of the Czech Republic, Czechia |
| Akademie Věd České Republiky |
| Akademie Věd České Republiky |
| Agradecimiento |
|---|
| The first author has been supported by the Grant Agency of the Czech Republic, Czechia (Grant No. 17-01747S) and by the Academy of Sciences of the Czech Republic, Czechia (RVO 67985840). The second author acknowledges the partial support of the Chilean Grant Agency FONDECYT, Chile through grant 1130346 and the support of DICYT of the Universidad de Santiago de Chile. |
| The first author has been supported by the Grant Agency of the Czech Republic , Czechia (Grant No. 17-01747S ) and by the Academy of Sciences of the Czech Republic , Czechia ( RVO 67985840 ). The second author acknowledges the partial support of the Chilean Grant Agency FONDECYT , Chile through grant 1130346 and the support of DICYT of the Universidad de Santiago de Chile. |