Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Predicting the COVID-19 in the Metropolitan Region (Chile) using a GCN-LSTM neural network
Indexado
WoS WOS:000788072700062
Scopus SCOPUS_ID:85126911648
DOI 10.1109/CHILECON54041.2021.9702969
Año 2021
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



COVID-19 is considered one of the largest pandemics in recent times. Predicting the number of future COVID-19 cases is extremely important for governments in order to make decisions about mobility restrictions, and for hospitals to be able to manage medical supplies, as well as health staff. Most of the predictions of COVID-19 cases are based on mathematical-epidemiological models such as the SEIR and SIR models. In our work, we propose a model of neural networks GCN-LSTM (Graph Convolutional Network - Long Short Term Memory) to predict the spatio-temporal rate incidence of COVID-19 in the Metropolitana Region, Chile. While the GCN network incorporates the spatial correlation in the nearby municipalities, the LSTM network considers the temporal correlation for the prediction over time. To interpolate the missing daily data for the network input, the use of the GAM (Generalized Additive Model) model is proposed. The results show better predictions for some municipalities with higher habitat density.

Revista



Revista ISSN
978-1-6654-0873-8

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Reid, Samantha Mujer Universidad Nacional Andrés Bello - Chile
2 Nicolis, Orietta Mujer Universidad Nacional Andrés Bello - Chile
3 PERALTA-MARQUEZ, BILLY MARK Hombre Universidad Nacional Andrés Bello - Chile
4 IEEE Corporación

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.