Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A comparative study of a combinatorial machine learning approach to face detection using a very small training dataset
Indexado
WoS WOS:000788072700116
Scopus SCOPUS_ID:85126965462
DOI 10.1109/CHILECON54041.2021.9703030
Año 2021
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In recent years, machine learning algorithms have improved the prediction rates in object detection task, but with high computational cost in the training stage. Haar cascade classifier is a cheap method widely used in object detection, but its resulting predictions contain a significant number of false positives when the model was not trained with a large dataset. In this work, we propose a method to detect faces in images by using combinatorial widely used machine learning algorithms. The main goal of our approach was to reach acceptable prediction rates with models trained with a very small training dataset. In this way, we present a practical implementation with a statistical comparison between different prediction models. The models were tested with a fixed dataset and then compared by using standard evaluation metrics. Furthermore, the challenging Face Detection Data Set and Benchmark (FDDB) was used for performance evaluation. The experimental results showed that our proposed method reach similar prediction rates than some the state-of-the-art methods, even with better false positive rate, once trained with a dataset 97.20% smaller.

Revista



Revista ISSN
978-1-6654-0873-8

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Oyarzo Huichaqueo, Marco Hombre Leitat Technol Ctr - Chile
Leitat Chile - Chile
1 Huichaqueo, Marco Oyarzo - Leitat Technological Center and Its Initiative Leitat Chile - Chile
Leitat Technol Ctr - Chile
Leitat Chile - Chile
2 Magdaleno Maltas, Jordi Hombre Leitat Technol Ctr - España
2 Maltas, Jordi Magdaleno - Centro Tecnológico Leitat - España
Leitat Technol Ctr - Chile
3 IEEE Corporación

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Corporación de Fomento de la Producción
Innovation Found for Competitiveness of the Chilean Economic Development Agency (CORFO)
Innovation Found for Competitiveness of the Chilean Economic Development Agency

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the Innovation Found for Competitiveness of the Chilean Economic Development Agency (CORFO) under Grant 13CEI2-21839.
This work was supported in part by the Innovation Found for Competitiveness of the Chilean Economic Development Agency (CORFO) under Grant 13CEI2-21839. Marco Oyarzo is with Leitat Technological Center and its initiative Leitat Chile, Santiago 7500724 Chile (e-mail: moyarzo@ leitat.cl). Jordi Magdaleno is with Leitat Technological Center, Barcelona 08225 Spain (e-mail: jmagdaleno@leitat.org).

Muestra la fuente de financiamiento declarada en la publicación.