Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Real-time isooctane and pentane gas identification based on machine learning analysis techniques
Indexado
WoS WOS:000788072700126
Scopus SCOPUS_ID:85126922291
DOI 10.1109/CHILECON54041.2021.9702957
Año 2021
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Artificial intelligence has made it possible to advance in the development of electronic systems that aim to replicate human senses such as vision, hearing and smell in intelligent applications or robotic systems. Today, there are commercial sensors for detection of conventional gases such as methane, butane, carbon monoxide, among others, but not for gases of a more complex chemical nature which are widely used in the petrochemical industry. In this paper we present the development of a recognition system between isooctane and pentane gases based on both low-cost sensors used in the detection of conventional gases and machine learning analysis techniques. For this, a novel gas analysis approach is proposed based on the use of Principal Component Analysis (PCA), both Linear and Quadratic Discriminant Analysis (LDA and QDA), and Support Vector Machine (SVM) algorithms. The experimental results showed that PCA-LDA method achieved the best prediction rates with 85.93% testing accuracy. Our approach also achieved 73.33% precision and an average prediction time of 0.003 seconds when tested in a simple real-time application.

Revista



Revista ISSN
978-1-6654-0873-8

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Oyarzo Huichaqueo, Marco Hombre Leitat Technol Ctr - Chile
Leitat Chile - Chile
1 Huichaqueo, Marco Oyarzo - Leitat Technological Center and Its Initiative Leitat Chile - Chile
Leitat Technol Ctr - Chile
Leitat Chile - Chile
2 Barra Oliva, Pabla Mujer Leitat Technol Ctr - Chile
Leitat Chile - Chile
2 Oliva, Pabla Barra - Leitat Technological Center and Its Initiative Leitat Chile - Chile
Leitat Technol Ctr - Chile
Leitat Chile - Chile
3 IEEE Corporación

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Corporación de Fomento de la Producción
Innovation Found for Competitiveness of the Chilean Economic Development Agency (CORFO)
Innovation Found for Competitiveness of the Chilean Economic Development Agency

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the Innovation Found for Competitiveness of the Chilean Economic Development Agency (CORFO) under Grant 13CEI2-21839.
This work was supported in part by the Innovation Found for Competitiveness of the Chilean Economic Development Agency (CORFO) under Grant 13CEI2-21839.

Muestra la fuente de financiamiento declarada en la publicación.