Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1117/12.2593811 | ||
| Año | 2021 | ||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
When propagated through atmospheric turbulence, Orbital Angular Momentum (OAM) modes suffer a loss of orthogonality that can compromise their detection and classification. The problem is more challenging when user information encoded on multi-state OAM superpositions needs to be detected with high probability. Optical sensors like the Shack-Hartmann detector or the Mode Sorter are candidates for such task. We describe how OAM histograms derived from such detectors can be used for decoding the original data symbols. We propose Machine Learning strategies for a reliable classification of the histogram patterns obtained with 4-mode superpositions propagated over a 1 km range in weak to intermediate turbulence.
| Revista | ISSN |
|---|---|
| Proceedings Of Spie The International Society For Optical Engineering | 0277-786X |
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | CISTERNAS-ELGUETA, JAIME EDUARDO | Hombre |
Universidad de Los Andes, Chile - Chile
|
| 2 | Irarrazaval Espinoza, Joaquin | Hombre | |
| 3 | Anguita, Jaime A. | - | |
| 4 | ANGUITA-GARCIA, JAIME ANDRES | Hombre | |
| 5 | Bos, JP | - | |
| 6 | Wayne, DT | - |