Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Iris Recognition Using Low-Level CNN Layers Without Training and Single Matching
Indexado
WoS WOS:000794164700001
Scopus SCOPUS_ID:85128282213
DOI 10.1109/ACCESS.2022.3166910
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Iris is one of the most accurate biometrics. This has led to the successful development of large-scale applications. However, with population growth, and new international applications, datasets are constantly increasing in size, requiring more robust and faster methods. Many descriptors and feature extractors have been developed to extract features that represent the iris biometric pattern. Most of them have been designed by human experts and require a bit-shifting process to increase their robustness to eye rotations, at the expense of increased matching time. We propose a fast iris recognition method that requires a single matching operation and is based on pre-trained image classification models as feature extractors. Our approach uses the filters of the first layers from Convolutional Neural Networks as feature extractors and does not require fine-tuning for new datasets. Since our selected features extracted from convolutional layers encode the iris surface, they have the advantage of not being restricted to specific spatial positions. Thus, it is not necessary to perform a bit-shifting process in the matching stage, eliminating a significant number of computations. Additionally, to mitigate the effect produced by the mask border in rubber-sheet images, we propose filtering the feature map tensors by masking their channels and selecting the most relevant features. Our method was assessed on the publicly available datasets CASIA Iris Lamp and CASIA Iris Thousand, and showed significant improvement both in accuracy and in matching time.

Revista



Revista ISSN
Ieee Access 2169-3536

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Telecommunications
Engineering, Electrical & Electronic
Scopus
Materials Science (All)
Computer Science (All)
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Zambrano, Jorge E. Hombre Universidad de Chile - Chile
Advanced Mining Technology Center - Chile
Centro Avanzado de Tecnologia para la Mineria - Chile
2 Benalcazar, Daniel P. Hombre Universidad de Chile - Chile
Advanced Mining Technology Center - Chile
Centro Avanzado de Tecnologia para la Mineria - Chile
3 PEREZ-FLORES, CLAUDIO ANDRES Hombre Universidad de Chile - Chile
Advanced Mining Technology Center - Chile
Centro Avanzado de Tecnologia para la Mineria - Chile
4 Bowyer, Kevin W. Hombre UNIV NOTRE DAME - Estados Unidos
University of Notre Dame - Estados Unidos
College of Engineering - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Agencia Nacional de Investigacion y Desarrollo (ANID)
Department of Electrical Engineering and Advanced Mining Technology Center, Universidad de Chile

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the Agencia Nacional de Investigacion y Desarrollo (ANID) under Grant FONDECYT 1191610, Center AFB180004, Center ANID/BASAL FB210024, Becas/Doctorado Nacional under Grant 21191614; and in part by the Department of Electrical Engineering and Advanced Mining Technology Center, Universidad de Chile.

Muestra la fuente de financiamiento declarada en la publicación.