Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.4153/S0008439521000874 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider a concrete family of 2-towers (Q(x(n)))(n) of totally real algebraic numbers for whichwe prove that, for each n, Z[x(n)] is the ringof integers ofQ(x(n)) if and only if the constant term of theminimal polynomial of x(n) is square-free. We apply our characterization to produce new examples of monogenic number fields, which can be of arbitrary large degree under the ABC-Conjecture.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Castillo, Marianela | Mujer |
Universidad de Concepción - Chile
|
| Fuente |
|---|
| Universidad de Concepción |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Universidad de Concepción (Chile) |
| Conicyt fellowship "Beca Doctorado Nacional" |
| Fondecyt research project (Chile) |
| Agradecimiento |
|---|
| The work is part of my PhD thesis [1] under the supervision of X. Vidaux and C. R. Videla, to whom I am grateful for support and encouragement. It has been supported by the Conicyt fellowship "Beca Doctorado Nacional," by the Universidad de Concepcion (Chile), and by the Fondecyt research project 1130134 (Chile) of X. Vidaux. Part of this work was done while visiting Carlos R. Videla at Mount Royal University, Calgary, Canada. I am grateful to the referees for their careful reading of this paper, which helped improving the presentation and simplify some proofs. |
| The work is part of my PhD thesis [] under the supervision of X. Vidaux and C. R. Videla, to whom I am grateful for support and encouragement. It has been supported by the Conicyt fellowship “Beca Doctorado Nacional,” by the Universidad de Concepción (Chile), and by the Fondecyt research project 1130134 (Chile) of X. Vidaux. Part of this work was done while visiting Carlos R. Videla at Mount Royal University, Calgary, Canada. I am grateful to the referees for their careful reading of this paper, which helped improving the presentation and simplify some proofs. |