Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.PHYSA.2021.126552 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Complex adaptive systems can be modelled with Networks and Cellular Automata (CA). In the present work, we study the Greenberg-Hastings (GH) cellular automata running in the Watts-Strogatz (WS) network model. We are interested in finding the conditions under which the system operates near a critical point. We introduce the notion of leverage point in such a simple kind of model: a point in parameter space, at criticality, such that we can change the collective state of the system with a minimal effort. Within our proposed framework, the system's response to changes in disorder is maximal at the leverage point. The GH CA includes a transmission coefficient r that sets the threshold size in the dynamics. We evaluate numerically the critical transmission coefficient rc as a function of the average coordination number of the network K and of the rewiring probability p, where p controls the fluctuations in the coordination number. There is an interval of values in the transmission coefficient r for which the collective state of the system depends on network disorder. This interval narrows as the average coordination number increases and only within it we can tune for criticality by changing disorder alone. Our results are relevant for systems that operate at criticality in order to increase their dynamic range or to operate under optimal information-processing conditions. (C) 2021 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Reyes, L. I. | Hombre |
Universidad de Tarapacá - Chile
|
| 2 | LAROZE-NAVARRETE, DAVID NICOLAS | Hombre |
Universidad de Tarapacá - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Basal |
| Fondecyt, Chile |
| Centro para el Desarrollo de la Nanociencia y la Nanotecnologia |
| BASAL/CONICYT, Chile |
| Agradecimiento |
|---|
| We thank David Becerra-Alonso (Universidad Loyola Andalucia) for his useful discussions. DL acknowledges partial financial support from FONDECYT, Chile 1180905 and Centers of excellence with BASAL/CONICYT, Chile financing, AFB180001, CEDENNA. LR acknowledges Miguel Pineda and Olga Lopez for useful discussions during early stages of this work. |
| We thank David Becerra-Alonso (Universidad Loyola Andaluc?a) for his useful discussions. DL acknowledges partial financial support from FONDECYT, Chile1180905 and Centers of excellence with BASAL/CONICYT, Chile financing, AFB180001, CEDENNA. LR acknowledges Miguel Pineda and Olga L?pez for useful discussions during early stages of this work. |