Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1080/10618600.2021.1999824 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In many applied fields incomplete covariate vectors are commonly encountered. It is well known that this can be problematic when making inference on model parameters, but its impact on prediction performance is less understood. We develop a method based on covariate dependent random partition models that seamlessly handles missing covariates while completely avoiding any type of imputation. The method we develop allows in-sample as well as out-of-sample predictions, even if the missing pattern in the new subjects'incomplete covariate vectorwas not seen in the training data. Any data type, including categorical or continuous covariates are permitted. In simulation studies, the proposed method compares favorably. We illustrate themethod in two application examples. Supplementary materials for this article are available here.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Page, Garritt L. | - |
Brigham Young Univ - Estados Unidos
BCAM Basque Ctr Appl Math - España Brigham Young University - Estados Unidos Basque Center for Applied Mathematics (BCAM) - España |
| 2 | QUINTANA-OSORIO, FRANCISCO JAVIER | Hombre |
Pontificia Universidad Católica de Chile - Chile
Millennium Nucleus Ctr Discovery Struct Complex D - Chile Núcleo Milenio Centro para el Descubrimiento de Estructuras en Datos Complejos - Chile Millennium Nucleus Center for the Discovery of Structures in Complex Data - Chile |
| 3 | Muller, Peter | Hombre |
Univ Texas Austin - Estados Unidos
The University of Texas at Austin - Estados Unidos |
| Fuente |
|---|
| FONDECYT |
| National Science Foundation |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Ministerio de Ciencia, Innovacion y Universidades |
| National Cancer Institute |
| Eusko Jaurlaritza |
| Basque Government through the BERC 2018-2021 program |
| BERC |
| U.S. National Cancer Institute |
| Agencia Nacional de Investigación y Desarrollo |
| ANID -Millennium Science Initiative Program |
| SpanishMinistry of Science, Innovation and Universities through BCAM Severo Ochoa accreditation |
| Agradecimiento |
|---|
| Garritt L. Page acknowledges support from the Basque Government through the BERC 2018-2021 program, by the SpanishMinistry of Science, Innovation and Universities through BCAM Severo Ochoa accreditation SEV-2017-0718. F. Quintana's research is funded by ANID -Millennium Science Initiative YProgram-NCN17_059. F. Quintana is also supported by FONDECYT grant 1180034. P. Muller acknowledges partial support fromgrantNSF/DMS 1952679 from the National Science Foundation, and under R01 CA132897 from the U.S. National Cancer Institute. |
| Garritt L. Page acknowledges support from the Basque Government through the BERC 2018-2021 program, by the Spanish Ministry of Science, Innovation and Universities through BCAM Severo Ochoa accreditation SEV-2017-0718. F. Quintana’s research is funded by ANID - Millennium Science Initiative Program—NCN17_059. F. Quintana is also supported by FONDECYT grant 1180034. P. Müller acknowledges partial support fromgrantNSF/DMS 1952679 from the National Science Foundation, and under R01 CA132897 from the U.S. National Cancer Institute. |