Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1016/J.JFA.2015.12.009 | ||
| Año | 2016 | ||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider the Cauchy problem for the two-dimensional Novikov-Veselov equation integrable via the inverse scattering problem for the Schrodinger operator with fixed negative energy. The associated linear equation is characterized by a rational symbol which is not a polynomial, except when the energy parameter is zero. With the help of a complex analysis point of view of the problem, we establish uniform decay estimates for the linear solution with gain of almost one derivative, and we use this result together with Fourier decomposition methods and X-s,X-b spaces to prove local well-posedness in H-s, s > 1/2. (C) 2015 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Kazeykina, Anna | Mujer |
Univ Paris 11 - Francia
|
| 2 | MUNOZ-CERON, CLAUDIO ANTONIO | Hombre |
Univ Paris 11 - Francia
|
| Fuente |
|---|
| ERC |
| Millennium Nucleus Center for Analysis of PDE |
| Fondo Basal CMM |
| Chilean grants Fondecyt |
| Agradecimiento |
|---|
| Partially funded by ERC Grant no. 291214, and Chilean grants FONDECYT 1150202, Fondo Basal CMM and Millennium Nucleus Center for Analysis of PDE NC130017. |
| Partially funded by ERC Grant no. 291214, and Chilean grants FONDECYT 1150202, Fondo Basal CMM and Millennium Nucleus Center for Analysis of PDE NC130017. |