Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||
| DOI | |||
| Año | 2019 | ||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We generalize the Bogomolov problem by asking when a closed subvariety of the principal orbit of a proper toric variety that has the same essential minimum than the ambient variety, must be a translate of a subtorus. We prove that the generalized Bogomolov problem has a positive answer for monocritical toric metrized divisors, and we give several examples of toric metrized divisors for which the Bogomolov problem has a negative answer.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Burgos Gil, Jose Ignacio | Hombre |
UAM - España
|
| 2 | Philippon, Patrice | Hombre |
Inst Math Jussieu - Francia
|
| 3 | RIVERA-LETELIER, JUAN EDUARDO | Hombre |
Univ Rochester - Estados Unidos
|
| 4 | Sombra, Martin | Hombre |
ICREA - España
Univ Barcelona - España |
| Agradecimiento |
|---|
| Research of the first author supported in part by the MINECO research projects MTM2013-42135-P, MTM2016- 79400-P and ICMAT Severo Ochoa SEV-2015-0554; research of the second author supported in part by the CNRS research project PICS 6381 "Geometrie diophantienne et calcul formel" and the ANR research project "Hauteurs, modularite, transcendance"; research of the first and second authors supported also in part by the FP7-MC-IRSES project no. 612534 "MODULI"; research of the third author supported in part by FONDECYT grant 1141091 and NSF grant DMS-1700291; research of the fourth author supported in part by the MINECO research projects MTM2012-38122-C03-02 and MTM2015-65361-P and through the "Maria de Maeztu" program for units of excellence MDM-2014-0445. |