Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3847/1538-4357/AC2EB5 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present estimates for the number of shadow-resolved supermassive black hole (SMBH) systems that can be detected using radio interferometers, as a function of angular resolution, flux density sensitivity, and observing frequency. Accounting for the distribution of SMBHs across mass, redshift, and accretion rate, we use a new semianalytic spectral energy distribution model to derive the number of SMBHs with detectable and optically thin horizon-scale emission. We demonstrate that (sub)millimeter interferometric observations with similar to 0.1 mu as resolution and similar to 1 mu Jy sensitivity could access >10(6) SMBH shadows. We then further decompose the shadow source counts into the number of black holes for which we could expect to observe the first- and second-order lensed photon rings. Accessing the bulk population of first-order photon rings requires less than or similar to 2 mu as resolution and less than or similar to 0.5 mJy sensitivity, whereas doing the same for second-order photon rings requires less than or similar to 0.1 mu as resolution and less than or similar to 5 mu Jy sensitivity. Our model predicts that with modest improvements to sensitivity, as many as similar to 5 additional horizon-resolved sources should become accessible to the current Event Horizon Telescope (EHT), whereas a next-generation EHT observing at 345 GHz should have access to similar to 3 times as many sources. More generally, our results can help guide enhancements of current arrays and specifications for future interferometric experiments that aim to spatially resolve a large population of SMBH shadows or higher-order photon rings.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Ni, Chunchong | Hombre |
Harvard & Smithsonian - Estados Unidos
Harvard University - Estados Unidos Harvard-Smithsonian Center for Astrophysics - Estados Unidos |
| 2 | Palumbo, Daniel C. M. | Hombre |
Harvard & Smithsonian - Estados Unidos
Harvard University - Estados Unidos Harvard-Smithsonian Center for Astrophysics - Estados Unidos |
| 3 | Narayan, Ramesh | Hombre |
Harvard & Smithsonian - Estados Unidos
Harvard University - Estados Unidos Harvard-Smithsonian Center for Astrophysics - Estados Unidos |
| 4 | Blackburn, L. | Mujer |
Harvard & Smithsonian - Estados Unidos
Harvard University - Estados Unidos Harvard-Smithsonian Center for Astrophysics - Estados Unidos |
| 5 | Steenkamp, R. | Hombre |
Harvard & Smithsonian - Estados Unidos
Harvard University - Estados Unidos Harvard-Smithsonian Center for Astrophysics - Estados Unidos |
| 6 | Johnson, Margaret W. G. | Mujer |
Harvard & Smithsonian - Estados Unidos
Harvard University - Estados Unidos Harvard-Smithsonian Center for Astrophysics - Estados Unidos |
| 7 | Ma, Chung-Pei | - |
UNIV CALIF BERKELEY - Estados Unidos
University of California, Berkeley - Estados Unidos |
| 8 | Nagar, Neil M. | - |
Universidad de Concepción - Chile
|
| 9 | Natarajan, Priyamvada | - |
Harvard University - Estados Unidos
YALE UNIV - Estados Unidos Yale University - Estados Unidos Yale School of Engineering & Applied Science - Estados Unidos |
| 10 | Ricarte, Angelo | Hombre |
Harvard & Smithsonian - Estados Unidos
Harvard University - Estados Unidos Harvard-Smithsonian Center for Astrophysics - Estados Unidos |
| Fuente |
|---|
| National Science Foundation |
| Gordon and Betty Moore Foundation |
| black hole Initiative at Harvard University - John Templeton Foundation |
| Nucleo Milenio TITANs |
| Agradecimiento |
|---|
| We thank Gary Melnick for motivating conversations that sparked initial interest in pursuing this project. We also thank Avery Broderick, Tim Davis, Jason Dexter, and the anonymous referee for constructive comments that improved the quality of the paper. Support for this work was provided by the National Science Foundation through grants AST-1952099, AST-1935980, AST-1828513, AST-1440254, AST-1816420, and OISE 1743747, and by the Gordon and Betty Moore Foundation through grant GBMF-5278. This work has been supported in part by the Black Hole Initiative at Harvard University, which is funded by grants from the John Templeton Foundation and the Gordon and Betty Moore Foundation to Harvard University. N.N. acknowledges funding from Nucleo Milenio TITANs (NCN19-058). |