Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Adaptive Mesh Refinement in Deformable Image Registration: A Posteriori Error Estimates for Primal and Mixed Formulations
Indexado
WoS WOS:000735767700002
Scopus SCOPUS_ID:85164913672
DOI 10.1137/20M1364333
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Deformable image registration (DIR) is a popular technique for the alignment of digital images, with highly relevant applications in medical image analysis. However, the numerical solution of DIR problems can be very challenging in computational terms, as the improvement of the DIR solution typically involves a uniform refinement of the underlying domain discretization that exponentially increases the number of degrees of freedom. In this work, we develop adaptive mesh refinement schemes particularly designed for the finite-element solution of DIR problems. We start by deriving residual-based a posteriori error estimators for the primal and mixed formulations of the DIR problem and show that they are reliable and efficient. Based on these error estimators, we implement adaptive mesh-refinement schemes into a finite-element code to register images. We assess the numerical performance of the proposed adaptive scheme on smooth synthetic images, where numerical convergence is verified. We further show that the adaptive mesh refinement scheme can deliver solutions to DIR problems with significant reductions in the number of degrees of freedom without compromising the accuracy of the solution. We also confirm that the adaptive scheme proposed for the mixed DIR formulation successfully handles volume-constrained registration problems, providing optimal convergence in analytic examples. To demonstrate the applicability of the method, we perform adaptive DIR on medical brain images and binary images and study how image noise affects the proposed refinement schemes.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Software Engineering
Mathematics, Applied
Computer Science, Artificial Intelligence
Imaging Science & Photographic Technology
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Barnafi, Nicolas A. Hombre Univ Milan - Italia
Università degli Studi di Milano - Italia
2 GATICA-PEREZ, GABRIEL NIBALDO Hombre Universidad de Concepción - Chile
3 HURTADO-SEPULVEDA, DANIEL ESTEBAN Hombre Pontificia Universidad Católica de Chile - Chile
4 Miranda, Willian - Universidad de Concepción - Chile
5 Ruiz-Baier, R. Hombre MONASH UNIV - Australia
Sechenov Univ - Rusia
Universidad Adventista de Chile - Chile
Monash University - Australia
Sechenov First Moscow State Medical University - Rusia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
Ministry of Education and Science of the Russian Federation
CONICYT-Chile through grant FONDECYT
Ministry of Science and Higher Education of the Russian Federation
Monash Mathematics Research Fund
Centro de Investigacion Ingenieria Matematica (CI2MA), Universidad de Concepcion
PIA program Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal
Universidad de Concepción, Monash
Centro de Investigación Ingeniería Matemática

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The work of the authors was supported by CONICYT-Chile through grant FONDECYT Regular 1180832, project AFB170001 of the PIA program Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal, the Centro de Investigacion Ingenieria Matematica (CI2MA), Universidad de Concepcion, Monash Mathematics Research Fund S05802-3951284, and the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of world-class research centers, "Digital biodesign and personalised healthcare," grant 075-15-2020-926.
∗Received by the editors September 3, 2020; accepted for publication (in revised form) June 1, 2021; published electronically August 30, 2021. https://doi.org/10.1137/20M1364333 Funding: The work of the authors was supported by CONICYT-Chile through grant FONDECYT Regular 1180832, project AFB170001 of the PIA program Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal, the Centro de Investigación Ingeniería Matemática (CI2MA), Universidad de Concepción, Monash Mathematics Research Fund S05802-3951284, and the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of world-class research centers, “Digital biodesign and personalised healthcare,” grant 075-15-2020-926.

Muestra la fuente de financiamiento declarada en la publicación.