Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



FROG: A global machine-learning temperature calibration for branched GDGTs in soils and peats
Indexado
WoS WOS:000744097500003
Scopus SCOPUS_ID:85122352005
DOI 10.1016/J.GCA.2021.12.007
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



wBranched glycerol dialkyl glycerol tetraethers (brGDGTs) are a family of bacterial lipids which have emerged over time as robust temperature and pH paleoproxies in continental settings. Nevertheless, it was previously shown that other parameters than temperature and pH, such as soil moisture, thermal regime or vegetation can also influence the relative distribution of brGDGTs in soils and peats. This can explain a large part of the residual scatter in the global brGDGT calibrations with mean annual air temperature (MAAT) and pH in these settings. Despite improvements in brGDGT analytical methods and development of refined models, the root-mean-square error (RMSE) associated with global calibrations between brGDGT distribution and MAAT in soils and peats remains high (similar to 5 degrees C). The aim of the present study was to develop a new global terrestrial brGDGT temperature calibration from a worldwide extended dataset (i.e. 775 soil and peat samples, i.e. 112 samples added to the previously available global calibration) using a machine learning algorithm. Statistical analyses highlighted five clusters with different effects of potential confounding factors in addition to MAAT on the relative abundances of brGDGTs. The results also revealed the limitations of using a single index and a simple linear regression model to capture the response of brGDGTs to temperature changes. A new improved calibration based on a random forest algorithm was thus proposed, the so-called random Forest Regression for PaleOMAAT using brGDGTs (FROG). This multi-factorial and non-parametric model allows to overcome the use of a single index, and to be more representative of the environmental complexity by taking into account the non-linear relationships between MAAT and the relative abundances of the individual brGDGTs. The FROG model represents a refined brGDGT temperature calibration (R-2 = 0.8; RMSE = 4.01 degrees C) for soils and peats, more robust and accurate than previous global soil calibrations while being proposed on an extended dataset. This novel improved calibration was further applied and validated on two paleo archives covering the last 110 kyr and the Pliocene, respectively. (C) 2021 Elsevier Ltd. All rights reserved.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Geochemistry & Geophysics
Scopus
Geochemistry And Petrology
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Vequaud, Pierre Hombre Sorbonne Univ - Francia
Sorbonne Université - Francia
2 Thibault, Alexandre Hombre Innovat Hub - Francia
Antea Group - Francia
3 Derenne, Sylvie Mujer Sorbonne Univ - Francia
Sorbonne Université - Francia
4 Anquetil, Christelle Mujer Sorbonne Univ - Francia
Sorbonne Université - Francia
5 Collin, Sylvie Mujer Sorbonne Univ - Francia
Sorbonne Université - Francia
6 CONTRERAS-QUINTANA, SERGIO HERNAN Hombre Universidad Católica de la Santísima Concepción - Chile
7 Nottingham, Andrew T. Hombre UNIV EDINBURGH - Reino Unido
UNIV LEEDS - Reino Unido
The University of Edinburgh - Reino Unido
University of Leeds - Reino Unido
8 Sabatier, Pierre Hombre Univ Savoie Mt Blanc - Francia
Université Savoie Mont Blanc - Francia
9 Werne, Josef P. Hombre Univ Pittsburgh - Estados Unidos
University of Pittsburgh - Estados Unidos
10 Huguet, A. Hombre Sorbonne Univ - Francia
Sorbonne Université - Francia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
UK Natural Environment Research Council (NERC)
Natural Environment Research Council
Sorbonne Universite
Labex MATISSE
ECOS SUD/ECOS ANID
Labex MATISSE (Sorbonne Universite)
SHAPE project

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We thank Sorbonne Universite ' for a PhD scholarship to Pierre Ve ' quaud and the Labex MATISSE (Sorbonne Universite ') for financial support. The EC2CO programme (CNRS/INSU -BIOHEFECT/MICROBIEN) is thanked for funding of the SHAPE project. Arnaud Huguet and Sergio Contreras are grateful for funding of the ECOS SUD/ECOS ANID #C19U01/190011 project. Andrew T. Nottingham was supported by the UK Natural Environment Research Council (NERC), grant NE/T012226.
We thank Sorbonne Université for a PhD scholarship to Pierre Véquaud and the Labex MATISSE (Sorbonne Université) for financial support. The EC2CO programme (CNRS/INSU – BIOHEFECT/MICROBIEN) is thanked for funding of the SHAPE project. Arnaud Huguet and Sergio Contreras are grateful for funding of the ECOS SUD/ECOS ANID #C19U01/190011 project. Andrew T. Nottingham was supported by the UK Natural Environment Research Council (NERC), grant NE/T012226.

Muestra la fuente de financiamiento declarada en la publicación.