Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1090/PROC/14186 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We glue two families of Bernstein-Szego polynomials to construct the eigenbasis of an associated finite-dimensional Jacobi matrix. This gives rise to finite orthogonality relations for this composite eigenbasis of Bernstein-Szego polynomials. As an application, a number of Gauss-like quadrature rules are derived for the exact integration of rational functions with prescribed poles against the Chebyshev weight functions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | van Diejen, Jan Felipe | Hombre |
Universidad de Talca - Chile
|
| 2 | Emsiz, Erdal | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Nacional de Desarrollo CientÃfico y Tecnológico |
| Agradecimiento |
|---|
| This work was supported in part by the Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) Grants # 1170179 and # 1181046. |
| Received by the editors January 3, 2018, and, in revised form, April 5, 2018. 2010 Mathematics Subject Classification. Primary 65D32; Secondary 33C47, 33D45, 47B36. Key words and phrases. Quadrature rules, Bernstein-Szegö polynomials, orthogonality relations, Jacobi matrices. This work was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT ) Grants # 1170179 and # 1181046. |