Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A space-time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow
Indexado
WoS WOS:000746419000001
Scopus SCOPUS_ID:85123407782
DOI 10.5194/HESS-26-149-2022
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Timely projections of seasonal streamflow extremes can be useful for the early implementation of annual flood risk adaptation strategies. However, predicting seasonal extremes is challenging, particularly under nonstationary conditions and if extremes are correlated in space. The goal of this study is to implement a space-time model for the projection of seasonal streamflow extremes that considers the nonstationarity (interannual variability) and spatiotemporal dependence of high flows. We develop a space-time model to project seasonal streamflow extremes for several lead times up to 2 months, using a Bayesian hierarchical modeling (BHM) framework. This model is based on the assumption that streamflow extremes (3 d maxima) at a set of gauge locations are realizations of a Gaussian elliptical copula and generalized extreme value (GEV) margins with nonstationary parameters. These parameters are modeled as a linear function of suitable covariates describing the previous season selected using the deviance information criterion (DIC). Finally, the copula is used to generate streamflow ensembles, which capture spatiotemporal variability and uncertainty. We apply this modeling framework to predict 3 d maximum streamflow in spring (May-June) at seven gauges in the Upper Colorado River basin (UCRB) with 0- to 2-month lead time. In this basin, almost all extremes that cause severe flooding occur in spring as a result of snowmelt and precipitation. Therefore, we use regional mean snow water equivalent and temperature from the preceding winter season as well as indices of large-scale climate teleconnections - El Nino-Southern Oscillation, Atlantic Multidecadal Oscillation, and Pacific Decadal Oscillation - as potential covariates for 3 d spring maximum streamflow. Our model evaluation, which is based on the comparison of different model versions and the energy skill score, indicates that the model can capture the space-time variability in extreme streamflow well and that model skill increases with decreasing lead time. We also find that the use of climate variables slightly enhances skill relative to using only snow information. Median projections and their uncertainties are consistent with observations, thanks to the representation of spatial dependencies through covariates in the margins and a Gaussian copula. This spatiotemporal modeling framework helps in the planning of seasonal adaptation and preparedness measures as predictions of extreme spring streamflows become available 2 months before actual flood occurrence.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Geosciences, Multidisciplinary
Water Resources
Scopus
Water Science And Technology
Earth And Planetary Sciences (Miscellaneous)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ossandon, Alvaro Hombre Univ Colorado Boulder - Estados Unidos
Universidad Técnica Federico Santa María - Chile
University of Colorado Boulder - Estados Unidos
College of Engineering and Applied Science - Estados Unidos
2 Brunner, Manuela I. Mujer Natl Ctr Atmospher Res - Estados Unidos
Univ Freiburg - Alemania
National Center for Atmospheric Research - Estados Unidos
Universitat Freiburg - Alemania
3 Rajagopalan, Balaji - Univ Colorado Boulder - Estados Unidos
University of Colorado Boulder - Estados Unidos
College of Engineering and Applied Science - Estados Unidos
4 Kleiber, William Hombre Univ Colorado Boulder - Estados Unidos
University of Colorado Boulder - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
Comisión Nacional de Investigación Científica y Tecnológica
Russian Science Foundation
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Ministry of Earth sciences
Directorate for Geosciences
Schweizerischer Nationalfonds zur Forderung derWissenschaftlichen Forschung
Ministry of Earth Sciences, India
Comision Nacional de Investigacion Cientifica y Tecnologica Scholarship Program
Comisión Nacional de Investigación Cien-tífica y Tecnológica Scholarship Program
Schweizerischer Na-tionalfonds zur Förderung der Wissenschaftlichen Forschung

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research has been supported by the National Science Foundation (grant nos. 1243270, DMS-1811294, and DMS-1923062), the Comision Nacional de Investigacion Cientifica y Tecnologica Scholarship Program (grant no. DOCTORADO BECAS CHILE/2015-56150013), the Schweizerischer Nationalfonds zur Forderung derWissenschaftlichen Forschung (Postdoc.Mobility; grant no. P400P2_183844), and the Ministry of Earth Sciences, India (grant the Monsoon Mission Project).
Acknowledgements. This project has been funded by the National Science Foundation (grant no. 1243270). We also acknowledge the support from the Fulbright Foreign Student Program and the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) Scholarship Program (grant no. DOCTORADO BE-CAS CHILE/2015-56150013) for the first author. The second author was supported by the Swiss National Science Foundation via a PostDoc.Mobility grant (grant no. P400P2_183844). Partial support from the Monsoon Mission Project of the Ministry of Earth Sciences, India, for the first and third authors is thankfully acknowledged. The fourth author has been supported by the NSF (grant nos. DMS-1811294 and DMS-1923062).

Muestra la fuente de financiamiento declarada en la publicación.