Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3934/MATH.2022358 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper discusses the study of asymptotic behavior of non-oscillatory solutions for high order differential equations of Poincare type. We present two new and weaker hypotheses on the coefficients, which implies a well posedness result and a characterization of asymptotic behavior for the solution of the Poincare equation. In our discussion, we use the scalar method: we define a change of variable to reduce the order of the Poincare equation and thus demonstrate that a new variable can satisfies a nonlinear differential equation; we apply the method of variation of parameters and the Banach fixed-point theorem to obtain the well posedness and asymptotic behavior of the nonlinear equation; and we establish the existence of a fundamental system of solutions and formulas for the asymptotic behavior of the Poincare type equation by rewriting the results in terms of the original variable. Moreover we present an example to show that the results introduced in this paper can be used in class of functions where classical theorems fail to be applied.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | CORONEL-PEREZ, ANIBAL | Hombre |
Universidad del Bío Bío - Chile
|
| 2 | Huancas, Fernando | Hombre |
Universidad Tecnológica Metropolitana - Chile
|
| Fuente |
|---|
| Universidad del Bío-Bío |
| Universidad Tecnológica Metropolitana |
| Universidad del B?o-B?o |
| Universidad Tecnol?gica Metropolitana |
| Universidad del Bo-Bo (Chile) |
| Agradecimiento |
|---|
| The authors acknowledge the partial support of Universidad del Bo-Bo (Chile) through the research project of the Postdoctoral Program as a part of the project "Instalaci on del Plan Plurianual UBB 2016-2020", Universidad del Bo-Bo (Chile) through the research project 2120436 IF/R, and Universidad Tecnologica Metropolitana through the project supported by the Competition for Research Regular Projects, year 2020, Code LPR20-06. |
| The authors acknowledge the partial support of Universidad del B?o-B?o (Chile) through the research project of the Postdoctoral Program as a part of the project ?Instalaci?n del Plan Plurianual UBB 2016-2020?, Universidad del B?o-B?o (Chile) through the research project 2120436 IF/R, and Universidad Tecnol?gica Metropolitana through the project supported by the Competition for Research Regular Projects, year 2020, Code LPR20-06. |