Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.JFA.2018.09.004 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
How does the spectrum of a Schrodinger operator vary if the corresponding geometry and dynamics change? Is it possible to define approximations of the spectrum of such operators by defining approximations of the underlying structures? In this work a positive answer is provided using the rather general setting of groupoid C*-algebras. A characterization of the convergence of the spectra by the convergence of the underlying structures is proved. In order to do so, the concept of continuous field of groupoids is slightly extended by adding continuous fields of cocycles. With this at hand, magnetic Schrodinger operators on dynamical systems or Delone systems fall into this unified setting. Various approximations used in computational physics, like the periodic or the finite cluster approximations, are expressed through the tautological groupoid, which provides a universal model for fields of groupoids. The use of the Hausdorff topology turns out to be fundamental in understanding why and how these approximations work. (C) 2018 Elsevier Inc. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Beckus, Siegfried | Hombre |
Technion Israel Inst Technol - Israel
Technion - Israel Institute of Technology - Israel |
| 2 | Bellissard, Jean | Hombre |
Georgia Inst Technol - Estados Unidos
Westfalische Wilhelms Univ - Alemania Georgia Institute of Technology - Estados Unidos Westfälische Wilhelms-Universität Münster - Alemania |
| 3 | De Nittis, Giuseppe | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Fuente |
|---|
| National Science Foundation |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| NSF |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| National Stroke Foundation |
| FONDECYT grant Iniciacion en Investigacion |
| Directorate for Mathematical and Physical Sciences |
| Agradecimiento |
|---|
| Work supported in part by NSF Grant No. 0901514 and DMS-1160962 and SFB 878, Munster. GD's research is supported by the FONDECYT grant Iniciacion en Investigacion 2015 - No 11150143. |
| Work supported in part by NSF Grant No. 0901514 and DMS-1160962 and SFB 878, M?nster. GD's research is supported by the FONDECYT grant Iniciaci?n en Investigaci?n 2015 ? No 11150143. |