Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Target Detection by Target Simulation in X-ray Testing
Indexado
WoS WOS:000755128800001
Scopus SCOPUS_ID:85124986636
DOI 10.1007/S10921-022-00851-8
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In X-ray testing, the aim is to inspect those inner parts of an object that cannot be detected by the naked eye. Typical applications are the detection of targets like blow holes in casting inspection, cracks in welding inspection, and prohibited objects in baggage inspection. A straightforward solution today is the use of object detection methods based on deep learning models. Nevertheless, this strategy is not effective when the number of available X-ray images for training is low. Unfortunately, the databases in X-ray testing are rather limited. To overcome this problem, we propose a strategy for deep learning training that is performed with a low number of target-free X-ray images with superimposition of many simulated targets. The simulation is based on the Beer-Lambert law that allows to superimpose different layers. Using this method it is very simple to generate training data. The proposed method was used to train known object detection models (e.g. YOLO, RetinaNet, EfficientDet and SSD) in casting inspection, welding inspection and baggage inspection. The learned models were tested on real X-ray images. In our experiments, we show that the proposed solution is simple (the implementation of the training can be done with a few lines of code using open source libraries), effective (average precision was 0.91, 0.60 and 0.88 for casting, welding and baggage inspection respectively), and fast (training was done in a couple of hours, and testing can be performed in 11ms per image). We believe that this strategy makes a contribution to the implementation of practical solutions to the problem of target detection in X-ray testing.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Materials Science, Characterization & Testing
Materials Science, Characterization, Testing
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 MERY-QUIROZ, DOMINGO Hombre Pontificia Universidad Católica de Chile - Chile
2 Kaminetzky, Alejandro Hombre Pontificia Universidad Católica de Chile - Chile
3 Golborne, Laurence Mujer Pontificia Universidad Católica de Chile - Chile
4 Figueroa, Susana Mujer Pontificia Universidad Católica de Chile - Chile
5 Saavedra, Daniel Hombre Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Natural Science Foundation of China
Fondo Nacional de Desarrollo Científico y Tecnológico
Fondecyt Grant from National Science Foundation of Chile

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by Fondecyt Grant, No. 1191131 from National Science Foundation of Chile.
This work was supported in part by Fondecyt Grant, No. 1191131 from National Science Foundation of Chile.

Muestra la fuente de financiamiento declarada en la publicación.