Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.APNUM.2018.09.003 | ||||
| Año | 2019 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we introduce and analyze a mixed virtual element method (mixed-VEM) for a pseudostress-displacement formulation of the linear elasticity problem with non-homogeneous Dirichlet boundary conditions. We follow a previous work by some of the authors, and employ a mixed formulation that does not require symmetric tensor spaces in the finite element discretization. More precisely, the main unknowns here are given by the pseudostress and the displacement, whereas other physical quantities such as the stress, the strain tensor of small deformations, and the rotation, are computed through simple postprocessing formulae in terms of the pseudostress variable. We first recall the corresponding variational formulation, and then summarize the main mixed-VEM ingredients that are required for our discrete analysis. In particular, we utilize a well-known local projector onto a suitable polynomial subspace to define a calculable version of our discrete bilinear form, whose continuous version requires information of the variables on the interior of each element. Next, we show that the global discrete bilinear form satisfies the hypotheses required by the Babugca-Brezzi theory. In this way, we conclude the well-posedness of our mixed-VEM scheme and derive the associated a priori error estimates for the virtual solutions as well as for the fully computable projections of them. Furthermore, we also introduce a second element-by-element postprocessing formula for the pseudostress, which yields an optimally convergent approximation of this unknown with respect to the broken H(div)-norm. In addition, this postprocessing formula can also be applied to the postprocessed stress tensor. Finally, several numerical results illustrating the good performance of the method and confirming the theoretical rates of convergence are presented. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Caceres, Ernesto | Hombre |
Universidad de Concepción - Chile
Brown Univ - Estados Unidos Brown University - Estados Unidos |
| 2 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Universidad de Concepción - Chile
|
| 3 | SEQUEIRA-CHAVARRIA, FILANDER A. | - |
UNIV NACL - Costa Rica
Universidad Nacional de Costa Rica - Costa Rica Universidad Nacional - Costa Rica |
| Fuente |
|---|
| Universidad de Concepción |
| CONICYT-Chile |
| Comisión Nacional de Investigación Científica y Tecnológica |
| ANANUM |
| Universidad Nacional |
| Consejo Nacional de Innovacion, Ciencia y Tecnologia |
| Centro de Investigación en Ingeniería Matemática |
| CI 2 MA |
| Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal |
| Universidad Nacional (Costa Rica) |
| Centro de Investigacion en Ingenieria Maternatica (CI2MA), Universidad de Concepcion |
| Agradecimiento |
|---|
| This research was partially supported by CONICYT-Chile through [he project AFB170001 of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal, project Anillo ACT1118 (ANANUM), and the Becas-CONICYT Programme for foreign students; by Centro de Investigacion en Ingenieria Maternatica (CI<SUP>2</SUP>MA), Universidad de Concepcion; and by Universidad Nacional (Costa Rica), through the project 0106-16. |
| This research was partially supported by CONICYT -Chile through the project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal, project Anillo ACT1118 (ANANUM), and the Becas-CONICYT Programme for foreign students; by Centro de Investigación en Ingeniería Matemática (CI 2 MA), Universidad de Concepción ; and by Universidad Nacional (Costa Rica), through the project 0106-16 . |