Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



ConvLSTM Neural Networks for seismic event prediction in Chile
Indexado
Scopus SCOPUS_ID:85116274852
DOI 10.1109/INTERCON52678.2021.9532946
Año 2021
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Predicting seismic risk is a challenging task in order to avoid catastrophic effects. In this work, two models based on Convolutional Network (CNN) and Long Short Term Memory (LSTM) networks are proposed to predict the seismic risk in Chile. In particular, a ConvLSTM and a Multi-column ConvLSTM network are used for the prediction of the average number of seismic events greater than 2,8 magnitude on the Richter scale, in the Chilean regions of Coquimbo and Araucania between the years 2010 and 2017. For this model, the values of the intensity function estimated through an ETAS model and the accumulated displacement prior to a the seismic events are used as inputs. In particular, given the spatial and temporal characteristics of the seismic data, matrices of size 20x20 of the last 20 days are considered to predict the average number of seismic events of the next day in a given area. From the results obtained, the Multi-column ConvLSTM network achieved a coefficient of determination of 0,804 and a lower MSE than other networks.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Fuentes, Alex Gonzalez Hombre Universidad Nacional Andrés Bello - Chile
2 Nicolis, Orietta Mujer Universidad Nacional Andrés Bello - Chile
3 Peralta, Billy Hombre Universidad Nacional Andrés Bello - Chile
4 Chiodi, Marcello Hombre Università degli Studi di Palermo - Italia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.