Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Detecting Aggressiveness in Tweets: A Hybrid Model for Detecting Cyberbullying in the Spanish Language
Indexado
WoS WOS:000778205300024
Scopus SCOPUS_ID:85119279358
DOI 10.3390/APP112210706
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In recent years, the use of social networks has increased exponentially, which has led to a significant increase in cyberbullying. Currently, in the field of Computer Science, research has been made on how to detect aggressiveness in texts, which is a prelude to detecting cyberbullying. In this field, the main work has been done for English language texts, mainly using Machine Learning (ML) approaches, Lexicon approaches to a lesser extent, and very few works using hybrid approaches. In these, Lexicons and Machine Learning algorithms are used, such as counting the number of bad words in a sentence using a Lexicon of bad words, which serves as an input feature for classification algorithms. This research aims at contributing towards detecting aggressiveness in Spanish language texts by creating different models that combine the Lexicons and ML approach. Twenty-two models that combine techniques and algorithms from both approaches are proposed, and for their application, certain hyperparameters are adjusted in the training datasets of the corpora, to obtain the best results in the test datasets. Three Spanish language corpora are used in the evaluation: Chilean, Mexican, and Chilean-Mexican corpora. The results indicate that hybrid models obtain the best results in the 3 corpora, over implemented models that do not use Lexicons. This shows that by mixing approaches, aggressiveness detection improves. Finally, a web application is developed that gives applicability to each model by classifying tweets, allowing evaluating the performance of models with external corpus and receiving feedback on the prediction of each one for future research. In addition, an API is available that can be integrated into technological tools for parental control, online plugins for writing analysis in social networks, and educational tools, among others.

Revista



Revista ISSN
Applied Sciences Basel 2076-3417

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Multidisciplinary
Engineering, Multidisciplinary
Physics, Applied
Materials Science, Multidisciplinary
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Lepe-Faúndez, Manuel Hombre Universidad del Bío Bío - Chile
2 Navarrete, Alejandra Segura Mujer Universidad del Bío Bío - Chile
3 VIDAL-CASTRO, CHRISTIAN LAUTARO Hombre Universidad del Bío Bío - Chile
4 Martinez-Araneda, Claudia Mujer Universidad Católica de la Santísima Concepción - Chile
5 Rubio-Manzano, Clemente Hombre Universidad del Bío Bío - Chile
Universidad de Cádiz - España
UNIV CADIZ - España

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad Católica de la Santísima Concepción
B?o University
Bío‐Bío University
Engineering Faculty and Computer Science Department of the Universidad Cat?lica de la Sant?sima Concepci?n

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work has been done in collaboration with the research group SOMOS (SOftware-MOdelling-Science), funded by the Research Agency of the B?o-B?o University, and the Engineering Faculty and Computer Science Department of the Universidad Cat?lica de la Sant?sima Concepci?n, Chile.
This work has been done in collaboration with the research group SOMOS (SOftware-MOdelling-Science), funded by the Research Agency of the B?o-B?o University, and the Engineering Faculty and Computer Science Department of the Universidad Cat?lica de la Sant?sima Concepci?n, Chile.

Muestra la fuente de financiamiento declarada en la publicación.