Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Effect of macromolecular crowding on protein oxidation: Consequences on the rate, extent and oxidation pathways
Indexado
WoS WOS:000771231200030
Scopus SCOPUS_ID:85120005490
DOI 10.1016/J.REDOX.2021.102202
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Biological systems are heterogeneous and crowded environments. Such packed milieus are expected to modulate reactions both inside and outside the cell, including protein oxidation. In this work, we explored the effect of macromolecular crowding on the rate and extent of oxidation of Trp and Tyr, in free amino acids, peptides and proteins. These species were chosen as they are readily oxidized and contribute to damage propagation. Dextran was employed as an inert crowding agent, as this polymer decreases the fraction of volume available to other (macro)molecules. Kinetic analysis demonstrated that dextran enhanced the rate of oxidation of free Trp, and peptide Trp, elicited by AAPH-derived peroxyl radicals. For free Trp, the rates of oxidation were 15.0 ± 2.1 and 30.5 ± 3.4 μM min−1 without and with dextran (60 mg mL−1) respectively. Significant increases were also detected for peptide-incorporated Trp. Dextran increased the extent of Trp consumption (up to 2-fold) and induced short chain reactions. In contrast, Tyr oxidation was not affected by the presence of dextran. Studies on proteins, using SDS-PAGE and LC-MS, indicated that oxidation was also affected by crowding, with enhanced amino acid loss (45% for casein), chain reactions and altered extents of oligomer formation. The overall effects of dextran-mediated crowding were however dependent on the protein structure. Overall, these data indicate that molecular crowding, as commonly encountered in biological systems affect the rates, and extents of oxidation, and particularly of Trp residues, illustrating the importance of appropriate choice of in vitro systems to study biological oxidations.

Revista



Revista ISSN
Redox Biology 2213-2317

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Biochemistry & Molecular Biology
Scopus
Organic Chemistry
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Fuentes-Lemus, Eduardo Hombre Københavns Universitet - Dinamarca
Univ Copenhagen - Dinamarca
2 Reyes, Juan Sebastian Hombre Pontificia Universidad Católica de Chile - Chile
3 Gamon, Luke Hombre Københavns Universitet - Dinamarca
Univ Copenhagen - Dinamarca
4 LÓPEZ-ALARCÓN, C Hombre Pontificia Universidad Católica de Chile - Chile
5 Davies, Michael J. Hombre Københavns Universitet - Dinamarca
Univ Copenhagen - Dinamarca

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
European Union
H2020 Marie Skłodowska-Curie Actions
Horizon 2020
Novo Nordisk Foundation
Horizon 2020 Framework Programme
Novo Nordisk Fonden
Lundbeck Foundation
Marie Sklodowska-Curie
Lundbeckfonden

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 890681 (to EFL) and the Novo Nordisk Foundation (Laureate grants: NNF13OC0004294 and NNF20SA0064214 to MJD). LFG acknowledges the Lundbeck Foundation for financial support (fellowship 117939). CLA acknowledges funding from Fondecyt grant n° 1180642.
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 890681 (to EFL) and the Novo Nordisk Foundation (Laureate grants: NNF13OC0004294 and NNF20SA0064214 to MJD). LFG acknowledges the Lundbeck Foundation for financial support (fellowship 117939). CLA acknowledges funding from Fondecyt grant n. 1180642.

Muestra la fuente de financiamiento declarada en la publicación.