Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/M2AN/2021072 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We propose and analyze a new mixed finite element method for the nonlinear problem given by the coupling of the steady Brinkman-Forchheimer and double-diffusion equations. Besides the velocity, temperature, and concentration, our approach introduces the velocity gradient, the pseudostress tensor, and a pair of vectors involving the temperature/concentration, its gradient and the velocity, as further unknowns. As a consequence, we obtain a fully mixed variational formulation presenting a Banach spaces framework in each set of equations. In this way, and differently from the techniques previously developed for this and related coupled problems, no augmentation procedure needs to be incorporated now into the formulation nor into the solvability analysis. The resulting non-augmented scheme is then written equivalently as a fixed-point equation, so that the well-known Banach theorem, combined with classical results on nonlinear monotone operators and Babuška-Brezzi's theory in Banach spaces, are applied to prove the unique solvability of the continuous and discrete systems. Appropriate finite element subspaces satisfying the required discrete inf-sup conditions are specified, and optimal a priori error estimates are derived. Several numerical examples confirm the theoretical rates of convergence and illustrate the performance and flexibility of the method.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Caucao, Sergio | Hombre |
Universidad Católica de la Santísima Concepción - Chile
|
| 2 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Universidad de Concepción - Chile
|
| 3 | ORTEGA-ROJAS, JUAN PABLO | Hombre |
Universidad de Concepción - Chile
|
| Fuente |
|---|
| Universidad de Concepción |
| Centro de Investigación en Ingeniería Matemática |
| Convocatoria nacional subvencion a la instalacion en la academia |
| Centro de Modelamiento Matematico |
| ANID-Chile |
| Centro de Investigacion en Ingenieria Matematica (CI2 MA) |
| BECAS/DOCTORADO NACIONAL |
| PAI Program |
| Anillo of Computational Mathematics for Desalination Processes |
| Agradecimiento |
|---|
| This work has been partially supported by ANID-Chile through projects ACE 210010, Centro de Modelamiento Matematico (FB 210005), Anillo of Computational Mathematics for Desalination Processes (ACT 210087), PAI77190084 of the PAI Program: Convocatoria Nacional Subvencion a la Instalacion en la Academia, and BECAS/DOCTORADO NACIONAL 21201539; and by Centro de Investigacion en Ingenieria Matematica (CI2 MA), Universidad de Concepcion. |
| Acknowledgements. This work has been partially supported by ANID-Chile through projects ACE 210010, Centro de Modelamiento Matemático (FB 210005), Anillo of Computational Mathematics for Desalination Processes (ACT 210087), PAI77190084 of the PAI Program: Convocatoria Nacional Subvención a la Instalación en la Academia, and BECAS/DOCTORADO NACIONAL 21201539; and by Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción. |