Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Entropy-driven phases at high coverage adsorption of straight rigid rods on two-dimensional square lattices
Indexado
WoS WOS:000724658900018
Scopus SCOPUS_ID:85121248040
DOI 10.1103/PHYSREVE.104.054136
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Polymers are frequently deposited on different surfaces, which has attracted the attention of scientists from different viewpoints. In the present approach polymers are represented by rigid rods of length k (k-mers), and the substrate takes the form of an L x L square lattice whose lattice constant matches exactly the interspacing between consecutive elements of the k-mer chain. We briefly review the classical description of the nematic transition presented by this system for k 7 observing that the high-coverage (0) transition deserves a more careful analysis from the entropy point of view. We present a possible viewpoint for this analysis that justifies the phase transitions. Moreover, we perform Monte Carlo (MC) simulations in the grand canonical ensemble, supplemented by thermodynamic integration, to first calculate the configurational entropy of the adsorbed phase as a function of the coverage, and then to explore the different phases (and orientational transitions) that appear on the surface with increasing the density of adsorbed k-mers. In the limit of 0 -> 1 (full coverage) the configurational entropy is obtained for values of k ranging between 2 and 10. MC data are discussed in comparison with recent analytical results [D. Dhar and R. Rajesh, Phys. Rev. E 103, 042130 (2021)]. The comparative study allows us to establish the applicability range of the theoretical predictions. Finally, the structure of the high-coverage phase is characterized in terms of the statistics of k x l domains (domains of l parallel k-mers adsorbed on the surface). A distribution of finite values of l (l << L) is found with a predominance of k x 1 (single k-mers) and k x k domains. The distribution is the same in each lattice direction, confirming that at high density the adsorbed phase goes to a state with mixed orientations and no orientational preference. An order parameter measuring the number of k x k domains in the adsorbed layer is introduced.

Revista



Revista ISSN
Physical Review E 2470-0045

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Physics, Mathematical
Physics, Fluids & Plasmas
Scopus
Statistics And Probability
Condensed Matter Physics
Statistical And Nonlinear Physics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Marcelo Pasinetti, Pedro Hombre UNIV NACL SAN LUIS - Argentina
Universidad Nacional de San Luis - Argentina
2 Ramirez-Pastor, A. J. Hombre UNIV NACL SAN LUIS - Argentina
Universidad Nacional de San Luis - Argentina
3 VOGEL-MATAMALA, EUGENIO EMILIO Hombre Universidad de La Frontera - Chile
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile
4 SARAVIA-CAMPOS, GONZALO Hombre

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Consejo Nacional de Investigaciones Científicas y Técnicas
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
FONDECYT (Chile)
Universidad Nacional de San Luis
CONICET (Argentina)
Universidad Nacional de San Luis (Argentina)
CEDENNA (Chile)
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by CONICET (Ar-gentina) under Project No. PIP 112-201101-00615; Univer-sidad Nacional de San Luis (Argentina) under Project No. 03-1920; and CEDENNA (Chile) under Contract No. Con-icyt AFB180001 and Fondecyt (Chile) under Contract No. 1190036. The numerical work was done using the BACO parallel cluster [94] located at the Instituto de Fisica Aplicada, Universidad Nacional de San Luis-CONICET, San Luis, Ar-gentina.
This work was supported in part by CONICET (Argentina) under Project No. PIP 112-201101-00615; Universidad Nacional de San Luis (Argentina) under Project No. 03-1920; and CEDENNA (Chile) under Contract No. Conicyt AFB180001 and Fondecyt (Chile) under Contract No. 1190036. The numerical work was done using the BACO parallel cluster located at the Instituto de Física Aplicada, Universidad Nacional de San Luis–CONICET, San Luis, Argentina.

Muestra la fuente de financiamiento declarada en la publicación.