Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CAMWA.2021.10.004 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we introduce and analyze, up to our knowledge for the first time, Banach spaces-based mixed variational formulations for nearly incompressible linear elasticity and Stokes models. Our interest in this subject is motivated by the respective need that arises from the solvability studies of nonlinear coupled problems in continuum mechanics that involve these equations. We consider pseudostress-based approaches in both cases and apply a suitable integration by parts formula for ad-hoc Sobolev spaces to derive the corresponding continuous schemes. We utilize known and new preliminary results, along with the Babuška-Brezzi theory in Banach spaces, to establish the well-posedness of the formulations for a particular range of the indexes of the Lebesgue spaces involved. Among the aforementioned new results from us, we highlight the construction of a particular operator mapping a tensor Lebesgue space into itself, and the generalization of a classical estimate in L2 for deviatoric tensors, which plays a key role in the Hilbertian analysis of linear elasticity, to arbitrary Lebesgue spaces. No discrete analysis is performed in this work.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | GATICA-PEREZ, GABRIEL NIBALDO | Hombre |
Universidad de Concepción - Chile
|
| 2 | Inzunza, Cristian | Hombre |
Universidad de Concepción - Chile
|
| Fuente |
|---|
| Universidad de Concepción |
| Centro de Investigación en Ingeniería Matemática |
| CI 2 MA |
| Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal |
| Centro de Investigaci?n en Ingenier?a Matem?tica |
| Centro de Modelamiento Matematico |
| Tecnol?gicos de Excelencia con Financiamiento Basal |
| ANID-Chile |
| Agradecimiento |
|---|
| This research was partially supported by ANID-Chile through the project Centro de Modelamiento Matemático ( FB210005 ) of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal, and the Becas Chile Programme for national students; and by Centro de Investigación en Ingeniería Matemática (CI 2 MA), Universidad de Concepción . |
| This research was partially supported by ANID-Chile through the project Centro de Modelamiento Matemático ( FB210005 ) of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal, and the Becas Chile Programme for national students; and by Centro de Investigación en Ingeniería Matemática (CI 2 MA), Universidad de Concepción . |