Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3847/1538-4365/AC141C | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present an analysis of mock X-ray spectra and light curves of magnetic cataclysmic variables using an upgraded version of the 3D cyclops code. This 3D representation of the accretion flow allows us to properly model total and partial occultation of the postshock region by the white dwarf as well as the modulation of the X-ray light curves due to the phase-dependent extinction of the preshock region. We carried out detailed postshock region modeling in a four-dimensional parameter space by varying the white dwarf mass and magnetic field strength as well as the magnetosphere radius and the specific accretion rate. To calculate the postshock region temperature and density profiles, we assumed equipartition between ions and electrons; took into account the white dwarf gravitational potential, the finite size of the magnetosphere, and a dipole-like magnetic field geometry; and considered cooling by both bremsstrahlung and cyclotron radiative processes. By investigating the impact of the parameters on the resulting X-ray continuum spectra, we show that there is an inevitable degeneracy in the four-dimensional parameter space investigated here, which compromises X-ray continuum spectral fitting strategies and can lead to incorrect parameter estimates. However, the inclusion of X-ray light curves in different energy ranges can break this degeneracy, and it therefore remains, in principle, possible to use X-ray data to derive fundamental parameters of magnetic cataclysmic variables, which represents an essential step toward understanding their formation and evolution.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Belloni, Diogo | Hombre |
Instituto Nacional de Pesquisas Espaciais - Brasil
Universidad Técnica Federico Santa María - Chile Inst Nacl Pesquisas Espaciais - Brasil |
| 2 | Rodrigues, C. V. | Mujer |
Instituto Nacional de Pesquisas Espaciais - Brasil
Inst Nacl Pesquisas Espaciais - Brasil |
| 3 | SCHREIBER-KELLNER, MATTHIAS RUDOLF | Hombre |
Universidad Técnica Federico Santa María - Chile
Valparaíso - Chile Núcleo Milenio de Formación Planetaria - Chile |
| 4 | CASTRO-GARRIDO, MANUEL | Hombre |
Instituto Nacional de Pesquisas Espaciais - Brasil
Inst Nacl Pesquisas Espaciais - Brasil |
| 5 | Costa, Joaquim E. R. | Hombre |
Instituto Nacional de Pesquisas Espaciais - Brasil
Inst Nacl Pesquisas Espaciais - Brasil |
| 6 | Hayashi, Takayuki | Hombre |
NASA Goddard Space Flight Center - Estados Unidos
University of Maryland, Baltimore County (UMBC) - Estados Unidos NASA Goddard Space Flight Ctr - Estados Unidos UNIV MARYLAND - Estados Unidos |
| 7 | Lima, I. J. | Mujer |
Instituto Nacional de Pesquisas Espaciais - Brasil
Inst Nacl Pesquisas Espaciais - Brasil |
| 8 | Luna, G. J. M. | Hombre |
Universidad de Buenos Aires - Argentina
Universidad Nacional de Hurlingham - Argentina UNIV BUENOS AIRES - Argentina Univ Nacl Hurlingham - Argentina |
| 9 | Martins, M. | - |
Universidade do Vale do Paraíba - Brasil
Univ Vale Paraiba - Brasil |
| 10 | Oliveira, A. S. | Hombre |
Universidade do Vale do Paraíba - Brasil
Univ Vale Paraiba - Brasil |
| 11 | Parsons, Steven G. | Hombre |
The University of Sheffield - Reino Unido
UNIV SHEFFIELD - Reino Unido |
| 12 | Silva, Karleyne M. G. | - |
Gemini ObservatorySouthern Operations Center - Chile
European Southern Observatory Santiago - Chile Observatorio Gemini - Chile ESO - Chile European Southern Observ - Chile |
| 13 | Stecchini, Paulo E. | Hombre |
Instituto Nacional de Pesquisas Espaciais - Brasil
Universidade de São Paulo - Brasil Inst Nacl Pesquisas Espaciais - Brasil UNIV SAO PAULO - Brasil |
| 14 | Stuchi, Teresa J. | Mujer |
Universidade Federal do Rio de Janeiro - Brasil
Univ Fed Rio Janeiro - Brasil |
| 15 | Zorotovic, M. | Mujer |
Universidad de Valparaíso - Chile
|
| Fuente |
|---|
| FONDECYT |
| CNPq |
| FAPESP |
| São Paulo Research Foundation (FAPESP) |
| Science and Technology Facilities Council (STFC) |
| Millennium Nucleus for Planet Formation (NPF) |
| MCTIC/FINEP (CT-INFRA grant) |
| ANPCyT-PICT |
| CONICYT PAI (Concurso Nacional de Insercion en la Academia 2017) |
| CONICYT/FONDECYT (Programa de Iniciacion) |
| ESO/Gobierno de Chile |
| Agradecimiento |
|---|
| We would like to thank an anonymous referee for the comments and suggestions that helped to improve this paper. We thank Alfredo N. Iusem for pleasantly explaining many issues associated with the Newton-Raphson root-finding method to solve boundary value problems. We also thank the MCTIC/FINEP (CT-INFRA grant 0112052700) and the Embrace Space Weather Program for the computing facilities at the National Institute for Space Research, Brazil. D.B. was supported by the SAo Paulo Research Foundation (FAPESP, grant #2017/14289-3) and partially supported by ESO/Gobierno de Chile. C.V.R. thanks grant 303444/2018-5 from CNPq and grant #2017/14289-3 from the SAo Paulo Research Foundation (FAPESP). M.R.S. acknowledges support from the Millennium Nucleus for Planet Formation (NPF) and Fondecyt (grant 1181404). M.C. thanks grant #2015/25972-0 by FAPESP. G.J.M.L. is a member of the CIC-CONICET (Argentina) and acknowledges support from grant ANPCYT-PICT 0901/2017. A.S.O acknowledges the SAo Paulo Research Foundation (FAPESP) for financial support under grant #2017/20309-7. S.G.P. acknowledges the support of a Science and Technology Facilities Council (STFC) Ernest Rutherford Fellowship. P.E.S. acknowledges FAPESP for financial support under grant #2017/13551-6. M.Z. acknowledges support from CONICYT PAI (Concurso Nacional de Insercion en la Academia 2017, Folio 79170121) and CONICYT/FONDECYT (Programa de Iniciacion, Folio 11170559). I.J.L acknowledges SAo Paulo Research Foundation (FAPESP) for financial support under grants #2018/05420-1, #2015/24383-7, and #2013/26258-4. |