Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Low-cost internet of things (IoT) for monitoring and optimising mining small-scale trucks and surface mining shovels
Indexado
WoS WOS:000697032000005
Scopus SCOPUS_ID:85113702663
DOI 10.1016/J.AUTCON.2021.103918
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This paper discusses the design and deployment of low-cost Internet of Things (IoT) in medium-scale open pit mines to optimise the performance of their mining small-scale trucks and surface mining shovels. Low-cost IoT can be implemented in medium-scale operations to automate the collection of process management information that is currently measured manually, replicating part of the results delivered by commercial Fleet Management Systems (FMSs) such as the calculations of the number of truck cycles per shift, the shovel loading time, truck and shovel positioning, tonnes moved per day, truck speed and average fleet efficiency. The process of developing mining benches can also be monitored. By monitoring these tasks, FMSs in the mining industry allow mine operators to maximise productivity, reduce the number of equipment required to accomplish production targets, minimise material re-handling, supply the plant as planned and meet ore blending objectives for better metallurgical recoveries. In the case of large-scale mines, these mining operations are prepared to invest in the high cost of a typical FMS (of the order of $100,000/month depending on fleet size) because they enable mine operators to ensure that their capital-intensive fleets operate at peak productivity, generating maximum return on investment. By contrast, many medium-scale mines cannot afford the installation and ongoing costs associated with a commercial FMS. Medium-scale mines typically have low capitalization, rented mining fleet and are run on a day-to-day basis, with staff being employed or laid off on an almost continuous basis. The emergence of low-cost IoT promises widespread and access to sensors and data that can be used for operational decision-making. This paper presents a trial of a low-cost, under $100, IoT-based Fleet Information System (FIS). The system does not attempt to replicate the functionality of a full FMS but delivers key management information to the mine operators while having low capital and running costs and no requirement for IT or technical skills for installation or maintenance. In a test case in Chile, the FIS was used to inform operational management changes that resulted in a reduction of loading time, optimisation of mining truck routes and truck speed control for better safety without an increase in the mining cost. The low cost of the solution allows medium-scale mines access to tools that can enable them to mirror the performance improvements of their bigger competitors. For medium-scale mines, that means longer life-of-mine, more local employment and a longer positive impact in the community.

Revista



Revista ISSN
Automation In Construction 0926-5805

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Construction & Building Technology
Engineering, Civil
Scopus
Civil And Structural Engineering
Building And Construction
Control And Systems Engineering
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Aguirre-Jofré, H. - University of Exeter - Reino Unido
Univ Exeter - Reino Unido
2 Eyre, M. - University of Exeter - Reino Unido
Univ Exeter - Reino Unido
3 Valerio, S. - Dataquest - Chile
4 Vogt, D. - University of Exeter - Reino Unido
Univ Exeter - Reino Unido

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.