Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Simulating site-scale permafrost hydrology: Sensitivity to modelling decisions and air temperature
Indexado
WoS WOS:000704794400062
Scopus SCOPUS_ID:85112296418
DOI 10.1016/J.JHYDROL.2021.126771
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



To predict future hydrological cycling in permafrost-dominated regions requires consideration of complex hydrological interactions that involve cryospheric states and fluxes, and hence thermodynamics. This challenges many hydrological models, particularly those applied in the Arctic. This study presents the implementation and validation of set of algorithms representing permafrost and frozen ground dynamics, coupled into a physically based, modular, cold regions hydrological model at two tundra sites in northern Yukon Territory, Canada. Hydrological processes represented in the model include evapotranspiration, soil moisture dynamics, flow through organic and mineral terrain, ground freeze–thaw, infiltration to frozen and unfrozen soils, snowpack energy balance, and the accumulation, wind redistribution, sublimation, and canopy interception of snow. The model was able to successfully represent observed ground surface temperature, ground thaw and snow accumulation at the two sites without calibration. A sensitivity analysis of simulated ground thaw revealed that the soil properties of the upper organic layer dominated the model response; however, its performance was robust for a range of realistic physical parameters. Different modelling decisions were assessed by removing the physically based algorithms for snowpack dynamics and ground surface temperature and replacing them with empirical approaches. Results demonstrate that more physically based approaches should be pursued to reduce uncertainties in poorly monitored environments. Finally, the model was driven by three climate warming scenarios to assess the sensitivity of snow redistribution and ablation processes and ground thaw to warming temperatures. This showed great sensitivity of snow regime and soil thaw to warming, even in the cold continental climate of the northwestern Canadian Arctic. The results are pertinent to transportation infrastructure and water management in this remote, cold, sparsely gauged region where traditional approaches to hydrological prediction are not possible.

Revista



Revista ISSN
Journal Of Hydrology 0022-1694

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Civil
Geosciences, Multidisciplinary
Water Resources
Scopus
Water Science And Technology
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Krogh, Sebastian A. Hombre University of Saskatchewan - Canadá
Universidad de Concepción - Chile
Univ Saskatchewan - Canadá
2 Pomeroy, John W. Hombre University of Saskatchewan - Canadá
Univ Saskatchewan - Canadá

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CONICYT
Comisión Nacional de Investigación Científica y Tecnológica
Natural Sciences and Engineering Research Council of Canada
NSERC
McMaster University
CRC Program
Yukon Environment
NSERC Changing Cold Regions Network
CFREF

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors thank the late Ric Janowicz (Yukon Environment), Sean Carey (McMaster University) and Tyler Williams (Yukon Environment) for their support in the installation, maintenance, and collection of data at the research sites. Funding for this study was provided by Yukon Environment, NSERC Discovery Grants, NSERC Changing Cold Regions Network, the CFREF-funded Global Water Futures program, the CRC program and CONICYT under the PhD Becas Chile scholarship program. This paper is dedicated to the memory of Ric Janowicz, Senior Hydrologist for Yukon Environment who led the development of Northern Hydrology in Yukon and was a key contributor to the development of the Cold Regions Hydrological Model. We thank the two anonymous reviewers for their helpful comments.
The authors thank the late Ric Janowicz (Yukon Environment), Sean Carey (McMaster University) and Tyler Williams (Yukon Environment) for their support in the installation, maintenance, and collection of data at the research sites. Funding for this study was provided by Yukon Environment, NSERC Discovery Grants, NSERC Changing Cold Regions Network, the CFREF-funded Global Water Futures program, the CRC program and CONICYT under the PhD Becas Chile scholarship program. This paper is dedicated to the memory of Ric Janowicz, Senior Hydrologist for Yukon Environment who led the development of Northern Hydrology in Yukon and was a key contributor to the development of the Cold Regions Hydrological Model. We thank the two anonymous reviewers for their helpful comments.

Muestra la fuente de financiamiento declarada en la publicación.