Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1515/CMAM-2021-0056 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We analyze backward Euler time stepping schemes for a primal DPG formulation of a class of parabolic problems. Optimal error estimates are shown in a natural norm and in the L 2 {L^{2}} norm of the field variable. For the heat equation the solution of our primal DPG formulation equals the solution of a standard Galerkin scheme and, thus, optimal error bounds are found in the literature. In the presence of advection and reaction terms, however, the latter identity is not valid anymore and the analysis of optimal error bounds requires to resort to elliptic projection operators. It is essential that these operators be projections with respect to the spatial part of the PDE, as in standard Galerkin schemes, and not with respect to the full PDE at a time step, as done previously.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Fuhrer, Thomas | Hombre |
Facultad de Matemáticas - Chile
Pontificia Universidad Católica de Chile - Chile |
| 2 | Heuer, N. | Hombre |
Facultad de Matemáticas - Chile
Pontificia Universidad Católica de Chile - Chile |
| 3 | Karkulik, Michael | Hombre |
Universidad Técnica Federico Santa María - Chile
|