Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion
Indexado
WoS WOS:000688396000003
Scopus SCOPUS_ID:85111071978
DOI 10.1016/J.RSE.2021.112582
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Remote sensors, onboard orbital platforms, aircraft, or unmanned aerial vehicles (UAVs) have emerged as a promising technology to enhance our understanding of changes in ecosystem composition, structure, and function of forests, offering multi-scale monitoring of forest restoration. UAV systems can generate high-resolution images that provide accurate information on forest ecosystems to aid decision-making in restoration projects. However, UAV technological advances have outpaced practical application; thus, we explored combining UAV-borne lidar and hyperspectral data to evaluate the diversity and structure of restoration plantings. We developed novel analytical approaches to assess twelve 13-year-old restoration plots experimentally established with 20, 60 or 120 native tree species in the Brazilian Atlantic Forest. We assessed (1) the congruence and complementarity of lidar and hyperspectral-derived variables, (2) their ability to distinguish tree richness levels and (3) their ability to predict aboveground biomass (AGB). We analyzed three structural attributes derived from lidar data—canopy height, leaf area index (LAI), and understory LAI—and eighteen variables derived from hyperspectral data—15 vegetation indices (VIs), two components of the minimum noise fraction (related to spectral composition) and the spectral angle (related to spectral variability). We found that VIs were positively correlated with LAI for low LAI values, but stabilized for LAI greater than 2 m2/m2. LAI and structural VIs increased with increasing species richness, and hyperspectral variability was significantly related to species richness. While lidar-derived canopy height better predicted AGB than hyperspectral-derived VIs, it was the fusion of UAV-borne hyperspectral and lidar data that allowed effective co-monitoring of both forest structural attributes and tree diversity in restoration plantings. Furthermore, considering lidar and hyperspectral data together more broadly supported the expectations of biodiversity theory, showing that diversity enhanced biomass capture and canopy functional attributes in restoration. The use of UAV-borne remote sensors can play an essential role during the UN Decade of Ecosystem Restoration, which requires detailed forest monitoring on an unprecedented scale.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Environmental Sciences
Remote Sensing
Imaging Science & Photographic Technology
Scopus
Soil Science
Geology
Computers In Earth Sciences
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Almeida, Danilo Roberti Alves de Hombre Universidade de São Paulo - Brasil
University of Florida - Estados Unidos
Univ Sao Paulo USP ESALQ - Brasil
1 Alves de Almeida, Danilo Roberti Hombre Univ Sao Paulo USP ESALQ - Brasil
UNIV FLORIDA - Estados Unidos
Universidade de São Paulo - Brasil
University of Florida - Estados Unidos
2 Broadbent, Eben - University of Florida - Estados Unidos
UNIV FLORIDA - Estados Unidos
3 Ferreira, Matheus Pinheiro - Instituto Militar de Engenharia - Brasil
Mil Inst Engn IME - Brasil
4 Meli, Paula Mujer Universidad de La Frontera - Chile
5 Zambrano, Angelica M. Almeyda Mujer University of Florida - Estados Unidos
UNIV FLORIDA - Estados Unidos
6 Gorgens, Eric Bastos Hombre Universidade Federal de Viçosa - Brasil
Fed Univ Jequitinhonha & Mucuri Valleys UFVJM - Brasil
7 Resende, Angelica Faria Mujer Universidade de São Paulo - Brasil
Univ Sao Paulo USP ESALQ - Brasil
8 de Almeida, Catherine Torres Mujer Universidade de São Paulo - Brasil
Univ Sao Paulo USP ESALQ - Brasil
9 do Amaral, Cibele Hummel - Universidade Federal de Viçosa - Brasil
Univ Fed Vicosa - Brasil
10 Corte, Ana Paula Dalla Mujer Universidade Federal do Paraná - Brasil
UNIV FED PARANA - Brasil
11 Silva, Carlos A. Hombre University of Florida - Estados Unidos
University of Maryland, College Park - Estados Unidos
UNIV FLORIDA - Estados Unidos
UNIV MARYLAND - Estados Unidos
12 Romanelli, Joao P. Hombre Universidade de São Paulo - Brasil
Univ Sao Paulo USP ESALQ - Brasil
13 Prata, Gabriel Atticciati Hombre University of Florida - Estados Unidos
UNIV FLORIDA - Estados Unidos
14 de Almeida Papa, Daniel Hombre Embrapa Acre - Brasil
14 Papa, Daniel de Almeida Hombre Embrapa Acre - Brasil
15 Stark, Scott Christopher Hombre Michigan State University - Estados Unidos
Michigan State Univ - Estados Unidos
16 Valbuena, Ruben Hombre Bangor University - Reino Unido
Bangor Univ - Reino Unido
17 Nelson, Bruce Walker Hombre Instituto Nacional de Pesquisas da Amazônia - Brasil
17 Nelsonn, Bruce Walker Hombre Natl Inst Amazon Res INPA - Brasil
Instituto Nacional de Pesquisas da Amazônia - Brasil
18 Guillemot, Joannes Hombre Universidade de São Paulo - Brasil
Ecologie fonctionnelle et biogéochimie des sols et agrosystèmes (Eco&Sols) - Francia
Université de Montpellier - Francia
Univ Sao Paulo USP ESALQ - Brasil
Cirad - Francia
Univ Montpellier - Francia
19 Féret, Jean Baptiste Hombre Université de Montpellier - Francia
Univ Montpellier - Francia
Cirad - Francia
20 Chazdon, Robin Hombre University of the Sunshine Coast - Australia
Univ Sunshine Coast - Australia
21 Brancalion, Pedro H.S. Hombre Universidade de São Paulo - Brasil
Univ Sao Paulo USP ESALQ - Brasil

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
National Science Foundation
São Paulo Research Foundation (FAPESP)
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fondo Nacional de Desarrollo Científico y Tecnológico
Fundação de Amparo à Pesquisa do Estado de São Paulo
U.S. Department of Agriculture
Agence Nationale de la Recherche
National Science Foundation (NSF)
Brazilian National Council for Scientific and Technological Development (CNPQ)
GatorEye system development
Agence Nationale de la Recherche (BioCop project)
McIntire-Stennis program of the USDA

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The São Paulo Research Foundation (FAPESP), (grants #2018/21338-3, #2018/18416-2, #2019/14697-0, #2019/08533-4 and #2019/24049-5) is acknowledged for financial support. We thank the McIntire-Stennis program of the USDA for support toward the GatorEye system development. P. Meli is supported by Fondecyt (project 11191021). M.P. Ferreira was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (grant #306345/2020-0). A.P.D. Corte was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (#302891/2018-8; #408785/2018-7). SC Stark was supported by National Science Foundation (NSF) DEB-1754357, DEB-1950080, EF-1340604, and EF-1550686. J.-B. Féret acknowledges financial support from Agence Nationale de la Recherche (BioCop project—ANR-17-CE32-0001).
The São Paulo Research Foundation (FAPESP) , (grants # 2018/21338-3 , # 2018/18416-2 , # 2019/14697-0 , # 2019/08533-4 and # 2019/24049-5 ) is acknowledged for financial support. We thank the McIntire-Stennis program of the USDA for support toward the GatorEye system development. P. Meli is supported by Fondecyt (project 11191021 ). M.P. Ferreira was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (grant # 306345/2020-0 ). A.P.D. Corte was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (# 302891/2018-8 ; # 408785/2018-7 ). SC Stark was supported by National Science Foundation (NSF) DEB-1754357 , DEB-1950080 , EF-1340604 , and EF-1550686 . J.-B. Féret acknowledges financial support from Agence Nationale de la Recherche (BioCop project— ANR-17-CE32-0001 ).
The Sao Paulo Research Foundation (FAPESP), (grants #2018/21338-3, #2018/18416-2, #2019/14697-0, #2019/08533-4 and #2019/24049-5) is acknowledged for financial support. We thank the McIntire-Stennis program of the USDA for support toward the GatorEye system development. P. Meli is supported by Fondecyt (project 11191021). M.P. Ferreira was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (grant #306345/2020-0). A.P.D. Corte was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (#302891/2018-8; #408785/2018-7). SC Stark was supported by National Science Foundation (NSF) DEB-1754357, DEB-1950080, EF1340604, and EF-1550686. J.-B. Feret acknowledges financial support from Agence Nationale de la Recherche (BioCop project-ANR-17CE32-0001).

Muestra la fuente de financiamiento declarada en la publicación.