Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1145/3447535.3462491 | ||||
| Año | 2021 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Digital media platforms are reshaping our habits, how we access information, and how we interact with others. As a result, algorithms used by platforms, for example, to recommend content, play an increasingly important role in our access to information. Due to practical difficulties of accessing how platforms present content to their users, relatively little is known about how recommendation algorithms affect the information people receive. In this paper we implement a sock-puppet audit, a computational framework to audit black-box social media systems so as to quantify the impact of algorithmic curation on the information people see. We evaluate this framework by conducting a study on Twitter. We demonstrate that Twitter's timeline curation algorithms skew the popularity and novelty of content people see and increase the inequality of their exposure to friends' tweets. Our work provides evidence that algorithmic curation of content systematically distorts the information people see.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bartley, Nathan | Hombre |
Information Sciences Institute - Estados Unidos
|
| 1 | Bartley, Nathan | - |
USC Informat Sci Inst - Estados Unidos
|
| 2 | Abeliuk, Andres | Hombre |
Universidad de Chile - Chile
|
| 2 | ABELIUK-KIMELMAN, ANDRES JONATHAN | Hombre |
Universidad de Chile - Chile
|
| 3 | Ferrara, Emilio | Hombre |
Information Sciences Institute - Estados Unidos
USC Informat Sci Inst - Estados Unidos |
| 4 | Lerman, Kristina | Mujer |
Information Sciences Institute - Estados Unidos
|
| 4 | Lerman, Kristina | - |
USC Informat Sci Inst - Estados Unidos
|
| 5 | ACM | Corporación |
| Fuente |
|---|
| AFOSR |
| DARPA |
| Air Force Office of Scientific Research |
| Defense Advanced Research Projects Agency |
| Agradecimiento |
|---|
| This work was funded in part by DARPA (under contracts W911NF-18-C-0011 and W911NF-17-C-0094) and AFOSR (under contract FA9550-20-1-0224). |
| This work was funded in part by DARPA (under contracts W911NF-18-C-0011 and W911NF-17-C-0094) and AFOSR (under contract FA9550-20-1-0224). |