Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Modeling soot formation in laminar coflow ethylene inverse diffusion flames
Indexado
WoS WOS:000686897600011
Scopus SCOPUS_ID:85107781474
DOI 10.1016/J.COMBUSTFLAME.2021.111513
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



A numerical study is conducted using the CoFlame code to investigate the sooting characteristics of ethylene-fueled laminar coflow inverse diffusion flames (IDFs), aiming to gain insights into the different flame structure and soot formation features between an IDF and a normal diffusion flame (NDF). The effects of oxygen mole fraction in the oxidizer stream, denoted as Oxygen Index (OI), on flame structure and soot production are studied over the OI range of 21% to 33%. The soot model parameters were chosen to produce overall reasonably good agreement between the predicted and measured in terms of soot volume fraction, mean primary particle size, and the mean number of primary particles per aggregate in both the normal and inverse configurations. A sensitivity study showed that soot nucleation and soot surface growth by PAH adsorption modeling should be considered simultaneously as a strongly coupled process through competing for polycyclic aromatic hydrocarbons (PAHs). The IDF configuration displays distinct characteristics from the NDF one in terms of flame structure as well as soot production. In IDFs soot is formed along the outer edge of reaction front, and does not cross the reaction front to the oxidizer, decoupling completely soot oxidation which leads to soot emission from the open flame tip. Modeling results indicate that in the IDF configuration the hydrogen abstraction acetylene addition (HACA) process is severely suppressed, while the adsorption of PAH molecules is dominant to soot surface growth at relatively low temperatures. Nucleation of new particles is significant all along the flame height, causing emission of young soot. IDF represents an ideal configuration to study soot surface growth by PAH adsorption. Increasing OI enhances all the soot processes, especially surface growth by PAH adsorption. Although soot oxidation rate by OH radicals is also strongly enhanced, it remains about two orders of magnitude lower than soot surface growth rate by PAH adsorption.

Revista



Revista ISSN
Combustion And Flame 0010-2180

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Multidisciplinary
Engineering, Chemical
Thermodynamics
Engineering, Mechanical
Energy & Fuels
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 DEMARCO-BULL, RODRIGO ANDRES Hombre Universidad Técnica Federico Santa María - Chile
2 JEREZ-OLIVARES, ALEJANDRO Hombre Universidad Técnica Federico Santa María - Chile
Universidad Nacional Andrés Bello - Chile
3 Liu, Feng - National Research Council Canada - Canadá
CNR - Canadá
4 Chen, Longfei - Beihang University - China
Beihang Univ - China
5 FUENTES-CASTILLO, ANDRES HERNAN Hombre Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
ANID
ANID FONDECYT/REGULAR
ANID-Chile Research programs

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by ANID - Chile Research programs under Grants ANID Fondecyt/Regular projects 1191758 and 1191850, PCI/NSFC 190009, and PIA/ANILLO ACT172095.
This work was supported by ANID-Chile Research programs under Grants ANID Fondecyt/Regular projects 1191758 and 1191850, PCI/NSFC 190 0 09, and PIA/ANILLO ACT172095.

Muestra la fuente de financiamiento declarada en la publicación.