Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.EJC.2021.103374 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In a directed graph D, given two distinct vertices u and v, the line defined by the ordered pair (u,v) is the set of all vertices w such that u,v and w belong to a shortest directed path in D, containing a shortest directed path from u to v. In this work we study the following conjecture: the number of distinct lines in any strongly connected graph is at least its number of vertices, unless there is a line containing all the vertices. Our main result is that any tournament satisfies this conjecture; we also prove this for bipartite tournaments of diameter at most three.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Araujo-Pardo, Gabriela | Mujer |
Universidad Nacional Autónoma de México - México
Univ Nacl Autonoma Mexico - México |
| 2 | MATAMALA-VASQUEZ, MARTIN IGNACIO | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Consejo Nacional de Ciencia y Tecnología |
| Comisión Nacional de Investigación Científica y Tecnológica |
| PAPIIT-México |
| Agradecimiento |
|---|
| Support by Basal program, ChileAFB170001 and Fondeyct, Chile1180994, Conicyt, PASPA-DGAPA and CONACyT Sabbatical Stay 2020, PAPIIT-México under projects IN107218 and IN106318, CONACyT-México under projects 282280, 47510664 and UNAM-CIC ‘La Conjetura de Chen-Chvátal en Gráficas Dirigidas’, Mexico. |