Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.37236/7762 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider the case where the graph G is a tree. We construct a family of trees G on n vertices and pairs of search trees on G such that the minimum number of rotations required to transform one search tree into the other is Omega(n log n). This implies that the worst-case diameter of tree associahedra is Theta(n log n), which answers a question from Thibault Manneville and Vincent Pilaud. The proof relies on a notion of projection of a search tree which may be of independent interest.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Cardinal, Jean | Hombre |
ULB - Bélgica
Université libre de Bruxelles (ULB) - Bélgica Université libre de Bruxelles - Bélgica |
| 2 | Langerman, Stefan | Hombre |
ULB - Bélgica
Université libre de Bruxelles (ULB) - Bélgica Université libre de Bruxelles - Bélgica |
| 3 | Perez-Lantero, Pablo | Hombre |
Universidad de Santiago de Chile - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Comisión Nacional de Investigación Científica y Tecnológica |
| European Union's Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie grant |
| Horizon 2020 |
| Horizon 2020 Framework Programme |
| CONICYT Fondecyt (Chile) |
| Agradecimiento |
|---|
| This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 734922. |
| This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 734922. |