Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Long-term Cognitive Network-based architecture for multi-label classification
Indexado
WoS WOS:000652749900004
Scopus SCOPUS_ID:85102630187
DOI 10.1016/J.NEUNET.2021.03.001
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This paper presents a neural system to deal with multi-label classification problems that might involve sparse features. The architecture of this model involves three sequential blocks with well-defined functions. The first block consists of a multilayered feed-forward structure that extracts hidden features, thus reducing the problem dimensionality. This block is useful when dealing with sparse problems. The second block consists of a Long-term Cognitive Network-based model that operates on features extracted by the first block. The activation rule of this recurrent neural network is modified to prevent the vanishing of the input signal during the recurrent inference process. The modified activation rule combines the neurons' state in the previous abstract layer (iteration) with the initial state. Moreover, we add a bias component to shift the transfer functions as needed to obtain good approximations. Finally, the third block consists of an output layer that adapts the second block's outputs to the label space. We propose a backpropagation learning algorithm that uses a squared hinge loss function to maximize the margins between labels to train this network. The results show that our model outperforms the state-of-the-art algorithms in most datasets. (C) 2021 The Author(s). Published by Elsevier Ltd.

Revista



Revista ISSN
Neural Networks 0893-6080

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Neurosciences
Computer Science, Artificial Intelligence
Scopus
Artificial Intelligence
Cognitive Neuroscience
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Napoles, Gonzalo Hombre Tilburg Univ - Países Bajos
Tilburg University - Países Bajos
2 Bello, Marilyn Mujer Hasselt Univ - Bélgica
Cent Univ Las Villas - Cuba
Universiteit Hasselt - Bélgica
Universidad Central de Las Villas - Cuba
Universidad Central "Marta Abreu" de Las Villas - Cuba
3 Salgueiro, Yamisleydi - Universidad de Talca - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CONICYT FONDECYT
Program CONICYT FONDECYT de Postdoctorado, Chile

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors would like to sincerely thank Isel Grau from the Vrije Universiteit Brussel, Belgium, who pointed out the advantages of using the squared hinge function instead of the mean squared error. This paper was partially supported by the Program CONICYT FONDECYT de Postdoctorado, Chile through the project 3200284.
The authors would like to sincerely thank Isel Grau from the Vrije Universiteit Brussel, Belgium, who pointed out the advantages of using the squared hinge function instead of the mean squared error. This paper was partially supported by the Program CONICYT FONDECYT de Postdoctorado, Chile through the project 3200284 .

Muestra la fuente de financiamiento declarada en la publicación.