Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Cyclic behavior of wood-frame shear walls with vertical load and bending moment for mid-rise timber buildings
Indexado
WoS WOS:000659327500001
Scopus SCOPUS_ID:85105690798
DOI 10.1016/J.ENGSTRUCT.2021.112298
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In light wood-frame buildings, the gravitational and lateral force-resisting systems are composed of floor diaphragms and shear walls. During an earthquake, these walls are subjected to the simultaneous action of in-plane vertical force, shear force, and in-plane bending moment. In a mid-rise building, these internal forces can reach large magnitudes, especially on the lower stories, and could have an important influence on the lateral behavior of the walls. The historical use of light wood-frame construction has been in low-rise buildings. Consequently, few investigations have analyzed the effects of high gravitational forces or in-plane bending moment on the lateral behavior of wood shear walls designed for multi-story buildings. This paper presents an investigation of the cyclic lateral behavior of light wood-frame shear walls, designed for mid-rise buildings, subjected to large axial compressive load and in-plane bending moment. Eight wall specimens were experimentally tested with a cyclic lateral displacement protocol, a constant compressive load, and a cyclic in-plane bending moment. The effects of axial compressive load and in-plane bending moment were analyzed. Also, the wall length and the spacing of sheathing nails were varied to study the effects of these variables on the response. A numerical study was performed to show how these effects could influence the response of mid-rise timber buildings. An improvement in the lateral performance of the walls was observed compared to walls tested without compressive force nor bending moment, showing an increase in stiffness, load-carrying capacity, and dissipated energy.

Revista



Revista ISSN
Engineering Structures 0141-0296

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Civil
Scopus
Civil And Structural Engineering
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Orellana, Paul Hombre Pontificia Universidad Católica de Chile - Chile
2 Santa-Maria, Hernan Hombre Pontificia Universidad Católica de Chile - Chile
ANID FONDAP 15110017 - Chile
2 SANTA MARIA-OYANEDEL, RAUL HERNAN Hombre Pontificia Universidad Católica de Chile - Chile
ANID/FONDAP/15110017 - Chile
3 ALMAZAN-CAMPILLAY, JOSE LUIS Hombre Pontificia Universidad Católica de Chile - Chile
4 Estrella, Xavier Hombre Pontificia Universidad Católica de Chile - Chile
Univ Technol Sydney - Australia
University of Technology Sydney - Australia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CORFO
CIGIDEN
Pontificia Universidad Católica de Chile
Republic of Ecuador
Research Center for Integrated Disaster Risk Management (CIGIDEN)
Research Center for Integrated Disaster Risk Management
Secretaría de Educación Superior, Ciencia, Tecnología e Innovación
UC Timber Innovation Center
CIM UC
UC Timber Innovation Center (CIM UC)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The research presented in this paper was funded by project 16BPE62260, CORFO, and the UC Timber Innovation Center (CIM UC) , and supported by the Research Center for Integrated Disaster Risk Management (CIGIDEN) , ANID/FONDAP/15110017. The shear wall tests were conducted at the Laboratory of Structural Engineering of the Pontificia Universidad Catolica de Chile. The first author recognizes the financial support provided by the postgraduate scholarship program of the SEN-ESCYT from the Republic of Ecuador.
The research presented in this paper was funded by project 16BPE-62260, CORFO, and the UC Timber Innovation Center (CIM UC), and supported by the Research Center for Integrated Disaster Risk Management (CIGIDEN), ANID/FONDAP/15110017. The shear wall tests were conducted at the Laboratory of Structural Engineering of the Pontificia Universidad Católica de Chile. The first author recognizes the financial support provided by the postgraduate scholarship program of the SENESCYT from the Republic of Ecuador.
The research presented in this paper was funded by project 16BPE-62260, CORFO, and the UC Timber Innovation Center (CIM UC), and supported by the Research Center for Integrated Disaster Risk Management (CIGIDEN), ANID/FONDAP/15110017. The shear wall tests were conducted at the Laboratory of Structural Engineering of the Pontificia Universidad Católica de Chile. The first author recognizes the financial support provided by the postgraduate scholarship program of the SENESCYT from the Republic of Ecuador.

Muestra la fuente de financiamiento declarada en la publicación.