Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1088/1361-6544/AC08EB | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In an attempt to understand the soliton resolution conjecture, we consider the sine-Gordon equation on a spherically symmetric wormhole spacetime. We show that within each topological sector (indexed by a positive integer degree n) there exists a unique linearly stable soliton, which we call the n-kink. We give numerical evidence that the n-kink is a global attractor in the evolution of any smooth, finite energy solutions of degree n. When the radius of the wormhole throat a is large enough, the convergence to the n-kink is shown to be governed by internal modes that slowly decay due to the resonant transfer of energy to radiation. We compute the exact asymptotics of this relaxation process for the one-kink using the Soffer-Weinstein weakly nonlinear perturbation theory.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bizon, Piotr | Hombre |
Jagiellonian Univ - Polonia
Uniwersytet Jagiellonski - Polonia |
| 2 | Dunajski, Maciej | Hombre |
UNIV CAMBRIDGE - Reino Unido
Faculty of Mathematics - Reino Unido |
| 3 | Kahl, Michel | Hombre |
Jagiellonian Univ - Polonia
Uniwersytet Jagiellonski - Polonia |
| 3 | Kahl, Michal | Hombre |
Uniwersytet Jagiellonski - Polonia
Jagiellonian Univ - Polonia |
| 4 | Kowalczyk, Michel | Hombre |
Universidad de Chile - Chile
|
| 4 | KOWALCZYK, MICHAL ANTONI | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| STFC |
| Science and Technology Facilities Council |
| National Science Centre |
| CMM Conicyt PIA |
| Agradecimiento |
|---|
| We acknowledge helpful conversations with Gary Gibbons during the early stage of this project. This work was supported in part by the National Science Centre Grant No. 2017/26/A/ST2/00530 (to PB), STFC consolidated Grant No. ST/P000681/1 (to MD), FONDECYT 1170164 and CMM Conicyt PIA AFB170001 (to MK). |