Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1093/MNRAS/STY1500 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We present multi-epoch photometry and spectroscopy of a light echo from eta Carinae's 19th century Great Eruption. This echo's light curve shows a steady decline over a decade, sampling the 1850s plateau of the eruption. Spectra show the bulk outflow speed increasing from similar to 150 km s(-1) at early times, up to similar to 600 km s(-1) in the plateau. Later phases also develop remarkably broad emission wings indicating mass accelerated to more than 10 000 km s(-1). Together with other clues, this provides direct evidence for an explosive ejection. This is accompanied by a transition from a narrow absorption line spectrum to emission lines, often with broad or asymmetric P Cygni profiles. These changes imply that the pre-1845 luminosity spikes are distinct from the 1850s plateau. The key reason for this change may be that shock interaction with circumstellar material (CSM) dominates the plateau. The spectral evolution of eta Car closely resembles that of the decade-long eruption of UGC 2773-OT, which had clear signatures of shock interaction. We propose a two-stage scenario for eta Car's eruption: (1) a slow outflow in the decades before the eruption, probably driven by binary interaction that produced a dense equatorial outflow, followed by (2) explosive energy injection that drove CSM interaction, powering the plateau and sweeping slower CSM into a fast shell that became the Homunculus. We discuss how this sequence could arise from a stellar merger in a triple system, leaving behind the eccentric binary seen today. This gives a self-consistent scenario that may explain interacting transients across a wide range of initial mass.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Smith, N. | Hombre |
UNIV ARIZONA - Estados Unidos
The University of Arizona - Estados Unidos |
| 2 | Andrews, Jennifer E. | Mujer |
UNIV ARIZONA - Estados Unidos
The University of Arizona - Estados Unidos |
| 3 | Rest, A. | Hombre |
Space Telescope Sci Inst - Estados Unidos
Space Telescope Science Institute - Estados Unidos |
| 4 | Bianco, Federica B. | Mujer |
NYU - Estados Unidos
New York University - Estados Unidos The Center for Cosmology and Particle Physics - Estados Unidos |
| 5 | PRIETO-KATUNARIC, JOSE LUIS | Hombre |
Universidad Diego Portales - Chile
Instituto Milenio de Astrofísica - Chile |
| 6 | Matheson, T. | Hombre |
Natl Opt Astron Observ - Estados Unidos
National Optical Astronomy Observatory - Estados Unidos |
| 7 | James, David J. | Hombre |
Harvard Smithsonian Ctr Astrophys - Estados Unidos
Smithsonian Astrophysical Observatory - Estados Unidos |
| 8 | Chris Smith, R. | - |
Natl Opt Astron Observ - Chile
|
| 8 | Smith, R. Chris | - |
Cerro Tololo Inter American Observatory - Chile
National Optical Astronomy Observatory - Chile |
| 8 | Chris Smith, R. | - |
Natl Opt Astron Observ - Chile
Cerro Tololo Inter American Observatory - Chile |
| 9 | Strampelli, Giovanni | Hombre |
Space Telescope Sci Inst - Estados Unidos
UNIV LA LAGUNA - España Space Telescope Science Institute - Estados Unidos Universidad de La Laguna - España |
| 10 | Zenteno, Alfredo | Hombre |
Natl Opt Astron Observ - Chile
Cerro Tololo Inter American Observatory - Chile National Optical Astronomy Observatory - Chile |
| Fuente |
|---|
| FONDECYT |
| NSF |
| CNPq (Brazil) |
| Ministry of Economy, Development, and Tourism's Millennium Science Initiative |
| National Science Foundation (NSF) |
| FINEP (Brazil) |
| STFC (UK) |
| U.S. DOE |
| NASA from the Space Telescope Science Institute |
| FAPERJ (Brazil) |
| Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) |
| HEFCE (England) |
| DES collaborating institutions |
| NCSA (Brazil) |
| KICP (Brazil) |
| MECD (Spain) |
| Agradecimiento |
|---|
| This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey DES) collaborating institutions. Funding for DES, including DECam, has been provided by the U.S. DoE, NSF, MECD (Spain), STFC (UK), HEFCE (England), NCSA, KICP, FINEP, FAPERJ, CNPq (Brazil), the GRF-sponsored cluster of excellence 'Origin and Structure of the Universe' and the DES collaborating institutions. This work makes use of observations from the LCO network. Based, in part, on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina), and Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) (Program GS-2014B-Q-24). |