Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1039/D1DT01638E | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Lithium manganese oxides (LMOs) are key materials due to their role in Li-ion batteries and lithium recovery from aqueous lithium resources. In the present work, we investigated the effect of the crystallization temperature on the formation by hydrothermal synthesis of LMO nanocomposites with high Li/Mn ratios. It is demonstrated that LMOs with a high Li/Mn ratio can be formed by systematically favoring the lithium-rich layered monoclinic phase (Li2MnO3) in a mixture of monoclinic and spinel crystalline phases. LMO nanocomposites have been characterized in terms of morphology, size, crystallinity, chemical composition and surface properties. Moreover, lithium adsorption experiments were conducted using acid-treated LMOs (HMOs) to evaluate the functionality of the nanocomposites as lithium adsorbent materials in a LiCl buffer solution. This study spotlights the structural, compositional, and functional properties of different LMO nanocomposites obtained by the hydrothermal method using the same Li and Mn precursor compounds at slightly different crystallization temperatures. According to our knowledge, this is the first report of the successful application of the lithium-rich Li2MnO3 phase in lithium manganese oxide nanocomposites as lithium adsorbent materials. Therefore, specific LMO nanocomposites with controlled amounts of the layered phase can be engineered to optimize lithium recovery from aqueous lithium resources.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Pulido, Ruth | Mujer |
UNIV AUTONOMA MADRID - España
Universidad de Antofagasta - Chile Instituto Universitario de Ciencia de Materiales Nicolás Cabrera - España |
| 2 | NAVEAS-RIOS, NELSON | Hombre |
UNIV AUTONOMA MADRID - España
Universidad de Antofagasta - Chile Instituto Universitario de Ciencia de Materiales Nicolás Cabrera - España |
| 3 | GRABER-SEGUEL, TEOFILO ARNOLDO | Hombre |
Universidad de Antofagasta - Chile
|
| 4 | Martin-Palma, Raul Jose | Hombre |
UNIV AUTONOMA MADRID - España
Instituto Universitario de Ciencia de Materiales Nicolás Cabrera - España |
| 5 | Agullo-Rueda, Fernando | Hombre |
CSIC - España
CSIC - Instituto de Ciencia de Materiales de Madrid (ICMM) - España |
| 6 | BRITO-BOBADILLA, IVAN LEANDRO | Hombre |
Universidad de Antofagasta - Chile
|
| 7 | Morales, Carlos | Hombre |
UNIV AUTONOMA MADRID - España
Instituto Universitario de Ciencia de Materiales Nicolás Cabrera - España |
| 8 | Soriano, Leonardo | Hombre |
UNIV AUTONOMA MADRID - España
Instituto Universitario de Ciencia de Materiales Nicolás Cabrera - España |
| 9 | Pascual, Laura | Mujer |
CSIC - España
CSIC - Instituto de Catalisis y Petroleoquimica - España CSIC - Instituto de Catálisis y Petroleoquímica (ICP) - España |
| 10 | Marini, Carlo | Hombre |
CELLS ALBA Synchrotron - España
ALBA Synchrotron Light Facility - España |
| 11 | HERNANDEZ-MONTELONGO, JESUS JACOBO | Hombre |
Universidad Católica de Temuco - Chile
|
| 12 | Manso-Silván, Miguel | Hombre |
UNIV AUTONOMA MADRID - España
Instituto Universitario de Ciencia de Materiales Nicolás Cabrera - España Centro de Microanálisis de Materiales - España |
| Fuente |
|---|
| CONICYT |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Universidad de Antofagasta |
| Universidad Aut?noma de Madrid |
| CCC-UAM |
| Agradecimiento |
|---|
| We acknowledge PhD. Programs in "Advanced Materials and Nanotechnologies" from Universidad Autonoma de Madrid (UAM, Spain) and "Ingenieria de Procesos de Minerales" from Universidad de Antofagasta (UA, Chile). This work was financially supported by CONICYT PFCHA/DOCTORADO/2015-21151648 (Ruth Pulido) and PFCHA/DOCTORADO/2017-21172001 (Nelson Naveas). We acknowledge ALBA synchrotron facility for beamtime no. 2020024325 at the CL AE SS beamline. The simulations used in this paper have been performed at the Centro de Computacion Cientifica-Universidad Autonoma de Madrid (CCC-UAM); thanks to CPU time and other resources granted by the institution. |
| We acknowledge PhD. Programs in ?Advanced Materials and Nanotechnologies? from Universidad Aut?noma de Madrid (UAM, Spain) and ?Ingenier?a de Procesos de Minerales? from Universidad de Antofagasta (UA, Chile). This work was financially supported by CONICYT PFCHA/DOCTORADO/2015-21151648 (Ruth Pulido) and PFCHA/DOCTORADO/2017-21172001 (Nelson Naveas). We acknowledge ALBA synchrotron facility for beamtime no. 2020024325 at the CL?SS beamline. The simulations used in this paper have been performed at the Centro de Computaci?n Cient?fica-Universidad Aut?noma de Madrid (CCC-UAM); thanks to CPU time and other resources granted by the institution. |
| We acknowledge PhD. Programs in ?Advanced Materials and Nanotechnologies? from Universidad Aut?noma de Madrid (UAM, Spain) and ?Ingenier?a de Procesos de Minerales? from Universidad de Antofagasta (UA, Chile). This work was financially supported by CONICYT PFCHA/DOCTORADO/2015-21151648 (Ruth Pulido) and PFCHA/DOCTORADO/2017-21172001 (Nelson Naveas). We acknowledge ALBA synchrotron facility for beamtime no. 2020024325 at the CL?SS beamline. The simulations used in this paper have been performed at the Centro de Computaci?n Cient?fica-Universidad Aut?noma de Madrid (CCC-UAM); thanks to CPU time and other resources granted by the institution. |