Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Accelerating frequency-domain numerical methods for weakly nonlinear focused ultrasound using nested meshes
Indexado
WoS WOS:000675824400003
Scopus SCOPUS_ID:85111053709
DOI 10.1121/10.0005655
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The numerical simulation of weakly nonlinear ultrasound is important in treatment planning for focused ultrasound (FUS) therapies. However, the large domain sizes and generation of higher harmonics at the focus make these problems extremely computationally demanding. Numerical methods typically employ a uniform mesh fine enough to resolve the highest harmonic present in the problem, leading to a very large number of degrees of freedom. This paper proposes a more efficient strategy in which each harmonic is approximated on a separate mesh, the size of which is proportional to the wavelength of the harmonic. The increase in resolution required to resolve a smaller wavelength is balanced by a reduction in the domain size. This nested meshing is feasible owing to the increasingly localised nature of higher harmonics near the focus. Numerical experiments are performed for FUS transducers in homogeneous media to determine the size of the meshes required to accurately represent the harmonics. In particular, a fast volume potential approach is proposed and employed to perform convergence experiments as the computation domain size is modified. This approach allows each harmonic to be computed via the evaluation of an integral over the domain. Discretising this integral using the midpoint rule allows the computations to be performed rapidly with the FFT. It is shown that at least an order of magnitude reduction in memory consumption and computation time can be achieved with nested meshing. Finally, it is demonstrated how to generalise this approach to inhomogeneous propagation domains.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Acoustics
Audiology & Speech Language Pathology
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Groth, Samuel P. Hombre UNIV CAMBRIDGE - Reino Unido
Department of Engineering - Reino Unido
2 Gélat, Pierre Hombre UCL - Reino Unido
University College London - Reino Unido
3 Haqshenas, Seyyed R. - UCL - Reino Unido
University College London - Reino Unido
4 Saffari, Nader Hombre UCL - Reino Unido
University College London - Reino Unido
5 van ’t Wout, Elwin Hombre Pontificia Universidad Católica de Chile - Chile
6 Betcke, Timo Hombre UCL - Reino Unido
University College London - Reino Unido
7 Wells, Garth N. Hombre UNIV CAMBRIDGE - Reino Unido
Department of Engineering - Reino Unido

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Engineering and Physical Sciences Research Council
Engineering and Physical Sciences Research Council (EPSRC)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by a grant entitled "Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)" from the Engineering and Physical Sciences Research Council (EPSRC) (Grant Nos. EP/P013309/1 to the University of Cambridge and EP/P012434/1 to University College London).
This work was supported by a grant entitled “Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)” from the Engineering and Physical Sciences Research Council (EPSRC) (Grant Nos. EP/P013309/1 to the University of Cambridge and EP/P012434/1 to University College London).

Muestra la fuente de financiamiento declarada en la publicación.