Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Electrochemical Detection of Global DNA Methylation Using Biologically Assembled Polymer Beads
Indexado
WoS WOS:000681943300001
Scopus SCOPUS_ID:85111148171
DOI 10.3390/CANCERS13153787
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Simple Summary Genomic profiling of cancer-derived materials in circulation has become an alternative approach for tumour genotyping. The detection of tumour origin markers such as DNA methylation in bodily fluids enables cancer screening, early-stage diagnosis and evaluation of therapy response. The development of broad platform technologies that underpin many in vitro clinical diagnostic tests has brought about a paradigm shift in cancer management and diagnosis. This study developed a multifaceted technology platform based on bioengineered polymer nanobeads for efficient capture and electrochemical detection of DNA methylation in ovarian cancer patient samples. This could be a versatile diagnostic platform for detecting numerous disease biomarkers, thus allowing several disease diagnoses. DNA methylation is a cell-type-specific epigenetic marker that is essential for transcriptional regulation, silencing of repetitive DNA and genomic imprinting. It is also responsible for the pathogenesis of many diseases, including cancers. Herein, we present a simple approach for quantifying global DNA methylation in ovarian cancer patient plasma samples based on a new class of biopolymer nanobeads. Our approach utilises the immune capture of target DNA and electrochemical quantification of global DNA methylation level within the targets in a three-step strategy that involves (i) initial preparation of target single-stranded DNA (ss-DNA) from the plasma of the patients' samples, (ii) direct adsorption of polymer nanobeads on the surface of a bare screen-printed gold electrode (SPE-Au) followed by the immobilisation of 5-methylcytosine (5mC)-horseradish peroxidase (HRP) antibody, and (iii) immune capture of target ss-DNA onto the electrode-bound PHB/5mC-HRP antibody conjugates and their subsequent qualification using the hydrogen peroxide/horseradish peroxidase/hydroquinone (H2O2/HRP/HQ) redox cycling system. In the presence of methylated DNA, the enzymatically produced (in situ) metabolites, i.e., benzoquinone (BQ), binds irreversibly to cellular DNA resulting in the unstable formation of DNA adducts and induced oxidative DNA strand breakage. These events reduce the available BQ in the system to support the redox cycling process and sequel DNA saturation on the platform, subsequently causing high Coulombic repulsion between BQ and negatively charged nucleotide strands. Thus, the increase in methylation levels on the electrode surface is inversely proportional to the current response. The method could successfully detect as low as 5% methylation level. In addition, the assay showed good reproducibility (% RSD <= 5%) and specificity by analysing various levels of methylation in cell lines and plasma DNA samples from patients with ovarian cancer. We envision that our bioengineered polymer nanobeads with high surface modification versatility could be a useful alternative platform for the electrochemical detection of varying molecular biomarkers.

Revista



Revista ISSN
Cancers 2072-6694

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Oncology
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Soda, Narshone - Griffith Univ - Australia
Griffith University - Australia
2 Gonzaga, Zennia Jean - Griffith Univ - Australia
Griffith University - Australia
3 Pannu, Amandeep Singh - Queensland Univ Technol - Australia
Queensland Univ Technol QUT - Australia
Queensland University of Technology - Australia
4 Kashaninejad, Navid Hombre Griffith Univ - Australia
Griffith University - Australia
5 Kline, Richard Hombre Ochsner Clin Fdn - Estados Unidos
Ochsner Health System - Estados Unidos
Ochsner Health - Estados Unidos
6 SALOMON-GALLO, CARLOS FRANCISCO Hombre Ochsner Clin Fdn - Estados Unidos
UNIV QUEENSLAND - Australia
Univ Pedro Valdivia - Chile
Ochsner Health System - Estados Unidos
UQ Centre for Clinical Research - Australia
Universidad Pedro de Valdivia - Chile
Ochsner Health - Estados Unidos
7 Nguyen, NT - Griffith Univ - Australia
Griffith University - Australia
7 Nguyen, Nam-Trung Hombre Griffith University - Australia
8 Sonar, Prashant Hombre Queensland Univ Technol - Australia
Queensland Univ Technol QUT - Australia
Queensland University of Technology - Australia
9 Rehm, Bernd H. A. Hombre Griffith Univ - Australia
Griffith University - Australia
Menzies Health Institute Queensland - Australia
10 Shiddiky, Muhammad J. A. Hombre Griffith Univ - Australia
Griffith University - Australia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Australian Research Council
Australian Research Council (ARC)
Lions Medical Research Foundation
Ovarian Cancer Research Foundation
Medical Research Future Fund
Griffith University
Ovarian Cancer Research Foundation (OCRF)
Griffith University International Postgraduate Research Scholarship (GUIPRS)
Donald & Joan Wilson Foundation Ltd.
Centre for Material Science
Lions Medical Research Foun‐ dation
Science and Engineering Faculty, Queensland University of Technology

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work supported by the Australian Research Council (ARC) Discovery Project (DP1901 02944) to M.J.A.S, DP180100055 to N.T.N. and Griffith University International Postgraduate Research Scholarship (GUIPRS) to N.S. C.S. is supported by The Lions Medical Research Foundation (2015001964), The Medical Research Future Fund (MRF1199984), The Donald & Joan Wilson Foundation Ltd. (2020000323), and Ovarian Cancer Research Foundation (OCRF, 2018001167).
Acknowledgments: The authors gratefully acknowledge QUT for the postgraduate research awarded to A.S.P. and Access to CARF is supported by generous funding from the Science and Engineering Faculty (QUT). A.S.P is also thankful to Centre for Material Science for the financial support. P.S. is thankful to QUT for financial support from the Australian Research Council (ARC) for the Future Fellowship (FT130101337) and QUT core funding (QUT/322120‐0301/07). B.H.A.R. acknowledges the support from Griffith University, the Australian Research Council (ARC) Discov‐ ery Project (DP200100874) and the ARC Linkage Infrastructure, Equipment and Facilities (LE20010014).
Funding: This work supported by the Australian Research Council (ARC) Discovery Project (DP190102944) to M.J.A.S, DP180100055 to N.T.N. and Griffith University International Postgradu‐ ate Research Scholarship (GUIPRS) to N.S. C.S. is supported by The Lions Medical Research Foun‐ dation (2015001964), The Medical Research Future Fund (MRF1199984), The Donald & Joan Wilson Foundation Ltd. (2020000323), and Ovarian Cancer Research Foundation (OCRF, 2018001167).
Acknowledgments: The authors gratefully acknowledge QUT for the postgraduate research awarded to A.S.P. and Access to CARF is supported by generous funding from the Science and Engineering Faculty (QUT). A.S.P is also thankful to Centre for Material Science for the financial support. P.S. is thankful to QUT for financial support from the Australian Research Council (ARC) for the Future Fellowship (FT130101337) and QUT core funding (QUT/322120‐0301/07). B.H.A.R. acknowledges the support from Griffith University, the Australian Research Council (ARC) Discov‐ ery Project (DP200100874) and the ARC Linkage Infrastructure, Equipment and Facilities (LE20010014).

Muestra la fuente de financiamiento declarada en la publicación.