Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1016/J.AEUE.2021.153875 | ||
| Año | 2021 | ||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, we present an extreme learning machine (ELM) neural network designed to perform multiple-input multiple-output (MIMO) detection for millimeter-wave (mm-wave) communications operating in the 28 GHz frequency band. The ELM strategy can perform online MIMO combining processing. This method does not require offline training like with deep neural networks. The proposed technique was compared in terms of the achievable bit error rate (BER) and spectral efficiency (SE) to the maximum ratio (MR) and minimum mean squared error (MMSE) MIMO detectors, considering an orthogonal frequency-division multiplexing (OFDM) uplink scheme based on the fifth generation (5G) New Radio standard. Numerical results show that the ELM strategy outperforms the MR and MMSE detectors since this method reduces the inter-user interference effects, specifically for low equivalent isotropic radiated power at the receiver during the uplink communication. Furthermore, the ELM method requires only 16 % of the floating-point operations required by the MMSE detector.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Fernando Carrera, Diego | Hombre |
Univ Tecnol Empresarial Guayaquil - Ecuador
|
| 2 | Vargas-Rosales, Cesar | Hombre |
Tecnol Monterrey - México
|
| 3 | AZURDIA-MEZA, CESAR AUGUSTO | Hombre |
Universidad de Chile - Chile
|
| 4 | Morocho-Yaguana, Marco | Hombre |
Univ Tecn Particular Loja - Ecuador
|
| Fuente |
|---|
| Secretaria de Educacion Publica (SEP)-Consejo Nacional de Ciencia y Tecnologia (CONACyT) Research Project |
| ANID Project FONDECYT Regular |
| School of Engineering and Sciences, the Telecommunications Research Focus Group at Tecnologico de Monterrey |
| Agradecimiento |
|---|
| This work was supported by the Secretaria de Educacion Publica (SEP)-Consejo Nacional de Ciencia y Tecnologia (CONACyT) Research Project 255387, the School of Engineering and Sciences, the Telecommunications Research Focus Group at Tecnologico de Monterrey, and by ANID Project FONDECYT Regular 1211132. C. Vargas-Rosales is at the School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico (e-mail: dfcarrera@ieee.org;cvargas@tec.mx).C.A.Azurdia-Meza is in the Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile (e-mail: cazurdia@ing.uchile.cl).M.Morocho-Yaguana is in the Department of Computer Science and Electronics, Universidad Tecnica Particular de Loja, Loja 110107, Ecuador (e-mail: mvmorocho@utpl.edu.ec). |